562 research outputs found

    Engineering a BCR-ABL-activated caspase for the selective elimination of leukemic cells.

    Get PDF
    Increased understanding of the precise molecular mechanisms involved in cell survival and cell death signaling pathways offers the promise of harnessing these molecules to eliminate cancer cells without damaging normal cells. Tyrosine kinase oncoproteins promote the genesis of leukemias through both increased cell proliferation and inhibition of apoptotic cell death. Although tyrosine kinase inhibitors, such as the BCR-ABL inhibitor imatinib, have demonstrated remarkable efficacy in the clinic, drug-resistant leukemias emerge in some patients because of either the acquisition of point mutations or amplification of the tyrosine kinase, resulting in a poor long-term prognosis. Here, we exploit the molecular mechanisms of caspase activation and tyrosine kinase/adaptor protein signaling to forge a unique approach for selectively killing leukemic cells through the forcible induction of apoptosis. We have engineered caspase variants that can directly be activated in response to BCR-ABL. Because we harness, rather than inhibit, the activity of leukemogenic kinases to kill transformed cells, this approach selectively eliminates leukemic cells regardless of drug-resistant mutations

    Wee1-Regulated Apoptosis Mediated by the Crk Adaptor Protein in Xenopus Egg Extracts

    Get PDF
    Many of the biochemical reactions of apoptotic cell death, including mitochondrial cytochrome c release and caspase activation, can be reconstituted in cell-free extracts derived from Xenopus eggs. In addition, because caspase activation does not occur until the egg extract has been incubated for several hours on the bench, upstream signaling processes occurring before full apoptosis are rendered accessible to biochemical manipulation. We reported previously that the adaptor protein Crk is required for apoptotic signaling in egg extracts (Evans, E.K., W. Lu, S.L. Strum, B.J. Mayer, and S. Kornbluth. 1997. EMBO (Eur. Mol. Biol. Organ.) J. 16:230–241). Moreover, we demonstrated that removal of Crk Src homology (SH)2 or SH3 interactors from the extracts prevented apoptosis. We now report the finding that the relevant Crk SH2-interacting protein, important for apoptotic signaling in the extract, is the well-known cell cycle regulator, Wee1. We have demonstrated a specific interaction between tyrosine-phosphorylated Wee1 and the Crk SH2 domain and have shown that recombinant Wee1 can restore apoptosis to an extract depleted of SH2 interactors. Moreover, exogenous Wee1 accelerated apoptosis in egg extracts, and this acceleration was largely dependent on the presence of endogenous Crk protein. As other Cdk inhibitors, such as roscovitine and Myt1, did not act like Wee1 to accelerate apoptosis, we propose that Wee1–Crk complexes signal in a novel apoptotic pathway, which may be unrelated to Wee1's role as a cell cycle regulator

    A reminder of the association between Clostridium septicum and colonic adenocarcinoma

    Get PDF
    We present the case of a patient, with previously unknown liver metastases, presenting with a liver abscess and Clostridium septicum septicaemia. C. septicum is known to be associated with both malignancy and immunosuppression and therefore in patients where this organism is isolated, efforts must be made to exclude an occult underlying malignancy or haematological disorder

    Latent Membrane Protein 1 as a molecular adjuvant for single-cycle lentiviral vaccines

    Get PDF
    Background Molecular adjuvants are a promising method to enhance virus-specific immune responses and protect against HIV-1 infection. Immune activation by ligands for receptors such as CD40 can induce dendritic cell activation and maturation. Here we explore the incorporation of two CD40 mimics, Epstein Barr Virus gene LMP1 or an LMP1-CD40 chimera, into a strain of SIV that was engineered to be limited to a single cycle of infection. Results Full length LMP1 or the chimeric protein LMP1-CD40 was cloned into the nef-locus of single-cycle SIV. Human and Macaque monocyte derived macrophages and DC were infected with these viruses. Infected cells were analyzed for activation surface markers by flow cytometry. Cells were also analyzed for secretion of pro-inflammatory cytokines IL-1β, IL-6, IL-8, IL-12p70 and TNF by cytometric bead array. Conclusions Overall, single-cycle SIV expressing LMP1 and LMP1-CD40 produced a broad and potent TH_H1-biased immune response in human as well as rhesus macaque macrophages and DC when compared with control virus. Single-cycle SIV-LMP1 also enhanced antigen presentation by lentiviral vector vaccines, suggesting that LMP1-mediated immune activation may enhance lentiviral vector vaccines against HIV-1
    corecore