166 research outputs found
Orphans and vulnerable youth in Bulawayo, Zimbabwe: An exploratory study of psychosocial well-being and psychosocial support
This Population Council Horizons report presents findings from an exploratory study by the Regional Psychosocial Support Initiative and Catholic Relief Services’ Support to Replicable, Innovative Village/Community-level Efforts Program of vulnerable youth living in and around Bulawayo, Zimbabwe. It describes their demographic characteristics, exposure to stress and trauma, and psychosocial well-being. The report also highlights the relationships between psychosocial well-being outcomes and exposure to stress and trauma, and the differences in psychosocial well-being between males and females, orphaned and nonorphaned youth, and younger and older adolescents. The report concludes with program and research implications
Effect of maternal oxytocin on umbilical venous and arterial blood flows during physiological-based cord clamping in preterm lambs
Background Delayed umbilical cord clamping (UCC) after birth is thought to cause placental to infant blood transfusion, but the mechanisms are unknown. It has been suggested that uterine contractions force blood out of the placenta and into the infant during delayed cord clamping. We have investigated the effect of uterine contractions, induced by maternal oxytocin administration, on umbilical artery (UA) and venous (UV) blood flows before and after ventilation onset to determine whether uterine contractions cause placental transfusion in preterm lambs.Methods and findingsAt similar to 128 days of gestation, UA and UV blood flows, pulmonary arterial blood flow (PBF) and carotid arterial (CA) pressures and blood flows were measured in three groups of fetal sheep during delayed UCC; maternal oxytocin following mifepristone, mifepristone alone, and saline controls. Each successive uterine contraction significantly (pDevelopmen
Neonatal cerebrovascular autoregulation.
Cerebrovascular pressure autoregulation is the physiologic mechanism that holds cerebral blood flow (CBF) relatively constant across changes in cerebral perfusion pressure (CPP). Cerebral vasoreactivity refers to the vasoconstriction and vasodilation that occur during fluctuations in arterial blood pressure (ABP) to maintain autoregulation. These are vital protective mechanisms of the brain. Impairments in pressure autoregulation increase the risk of brain injury and persistent neurologic disability. Autoregulation may be impaired during various neonatal disease states including prematurity, hypoxic-ischemic encephalopathy (HIE), intraventricular hemorrhage, congenital cardiac disease, and infants requiring extracorporeal membrane oxygenation (ECMO). Because infants are exquisitely sensitive to changes in cerebral blood flow (CBF), both hypoperfusion and hyperperfusion can cause significant neurologic injury. We will review neonatal pressure autoregulation and autoregulation monitoring techniques with a focus on brain protection. Current clinical therapies have failed to fully prevent permanent brain injuries in neonates. Adjuvant treatments that support and optimize autoregulation may improve neurologic outcomes
Systematic review and network meta-analysis with individual participant data on cord management at preterm birth (iCOMP): study protocol
Timing of cord clamping and other cord management strategies may improve outcomes at preterm birth. However, it is unclear whether benefits apply to all preterm subgroups. Previous and current trials compare various policies, including time-based or physiology-based deferred cord clamping, and cord milking. Individual participant data (IPD) enable exploration of different strategies within subgroups. Network meta-analysis (NMA) enables comparison and ranking of all available interventions using a combination of direct and indirect comparisons.
(1) To evaluate the effectiveness of cord management strategies for preterm infants on neonatal mortality and morbidity overall and for different participant characteristics using IPD meta-analysis. (2) To evaluate and rank the effect of different cord management strategies for preterm births on mortality and other key outcomes using NMA.
Systematic searches of Medline, Embase, clinical trial registries, and other sources for all ongoing and completed randomised controlled trials comparing cord management strategies at preterm birth (before 37 weeks' gestation) have been completed up to 13 February 2019, but will be updated regularly to include additional trials. IPD will be sought for all trials; aggregate summary data will be included where IPD are unavailable. First, deferred clamping and cord milking will be compared with immediate clamping in pairwise IPD meta-analyses. The primary outcome will be death prior to hospital discharge. Effect differences will be explored for prespecified participant subgroups. Second, all identified cord management strategies will be compared and ranked in an IPD NMA for the primary outcome and the key secondary outcomes. Treatment effect differences by participant characteristics will be identified. Inconsistency and heterogeneity will be explored.
Ethics approval for this project has been granted by the University of Sydney Human Research Ethics Committee (2018/886). Results will be relevant to clinicians, guideline developers and policy-makers, and will be disseminated via publications, presentations and media releases.
Australian New Zealand Clinical Trials Registry (ANZCTR) (ACTRN12619001305112) and International Prospective Register of Systematic Reviews (PROSPERO, CRD42019136640)
Dual role of cerebral blood flow in regional brain temperature control in the healthy newborn infant.
Small shifts in brain temperature after hypoxia-ischaemia affect cell viability. The main determinants of brain temperature are cerebral metabolism, which contributes to local heat production, and brain perfusion, which removes heat. However, few studies have addressed the effect of cerebral metabolism and perfusion on regional brain temperature in human neonates because of the lack of non-invasive cot-side monitors. This study aimed (i) to determine non-invasive monitoring tools of cerebral metabolism and perfusion by combining near-infrared spectroscopy and echocardiography, and (ii) to investigate the dependence of brain temperature on cerebral metabolism and perfusion in unsedated newborn infants. Thirty-two healthy newborn infants were recruited. They were studied with cerebral near-infrared spectroscopy, echocardiography, and a zero-heat flux tissue thermometer. A surrogate of cerebral blood flow (CBF) was measured using superior vena cava flow adjusted for cerebral volume (rSVC flow). The tissue oxygenation index, fractional oxygen extraction (FOE), and the cerebral metabolic rate of oxygen relative to rSVC flow (CMRO2 index) were also estimated. A greater rSVC flow was positively associated with higher brain temperatures, particularly for superficial structures. The CMRO2 index and rSVC flow were positively coupled. However, brain temperature was independent of FOE and the CMRO2 index. A cooler ambient temperature was associated with a greater temperature gradient between the scalp surface and the body core. Cerebral oxygen metabolism and perfusion were monitored in newborn infants without using tracers. In these healthy newborn infants, cerebral perfusion and ambient temperature were significant independent variables of brain temperature. CBF has primarily been associated with heat removal from the brain. However, our results suggest that CBF is likely to deliver heat specifically to the superficial brain. Further studies are required to assess the effect of cerebral metabolism and perfusion on regional brain temperature in low-cardiac output conditions, fever, and with therapeutic hypothermia
Anaemia in the Premature Infant and Red Blood Cell Transfusion: New Approaches to an Age-Old Problem
Superior vena cava flow in newborn infants: a novel marker of systemic blood flow
BACKGROUND—Ventricular outputs cannot be used to assess systemic blood flow in preterm infants because they are confounded by shunts through the ductus arteriosus and atrial septum. However, flow measurements in the superior vena cava (SVC) can assess blood returning from the upper body and brain.
OBJECTIVES—To describe a Doppler echocardiographic technique that measures blood flow in the SVC, to test its reproducibility, and to establish normal ranges.
DESIGN—SVC flow was assessed together with right ventricular output and atrial or ductal shunting. Normal range was established in 14 infants born after 36 weeks' gestation (2 measurements taken in the first 48 hours) and 25 uncomplicated infants born before 30 weeks (4 measurements taken in the first 48 hours). Intra-observer and interobserver variability were tested in 20 preterm infants.
RESULTS—In 14 infants born after 36 weeks, median SVC flow rose from 76 ml/kg/min on day 1 to 93 ml/kg/min on day 2; in 25 uncomplicated very preterm infants, it rose from 62 ml/kg/min at 5 hours to 86 ml/kg/min at 48 hours. The lowest SVC flow for the preterm babies rose from 30 ml/kg/min at 5 hours to 46 ml/kg/min by 48hours. Median intra-observer and interobserver variability were 8.1% and 14%, respectively. In preterm babies with a closed duct, SVC flow was a mean of 37% of left ventricular output and the two measures correlated significantly.
CONCLUSIONS—This technique can assess blood flow from the upper body, including the brain, in the crucial early postnatal period, and might allow more accurate assessment of the status of systemic blood flow and response to treatment.
- …