1,636 research outputs found

    What Does It Mean to Say That Aggressive Children Are Competent or Incompetent?

    Get PDF
    In contrast to the view that the association between aggression and competence (i.e., the capacity to compete in the company of others) is negative and linear, the present papers indicate that (a) children whose level of aggression is moderately above the mean show the highest level of competence whereas competence is lowest in children who show no signs of aggression or whose aggression is high and undifferentiated; (b) that the association between aggression and competence is moderated by the function the aggression serves; and (c) that moderately aggressive children are given status within the peer system even though other children do not typically like them. The association between aggression and competence needs to be understood according to basic aspects of group process such as dominance, resource control, and regulation of retaliatory gestures between group members. Although children who show moderate levels of aggression may be given status and power within the peer group, it does not mean they are adjusted or that they will receive or benefit from the affection or kindness from their peers

    Critical appraisal of pazopanib as treatment for patients with advanced metastatic renal cell carcinoma

    Get PDF
    The management of renal cell carcinoma (RCC) has undergone significant changes during the past 10 years, with the treatment of metastatic RCC undergoing the most radical changes. These developments reflect an enhanced understanding of this tumor’s underlying biology, which was then translated into the development of a new treatment paradigm. Current therapeutic approaches for the management of patients with metastatic RCC utilize knowledge of histology, molecular abnormalities, clinical prognostic factors, the natural history of this malignancy, and the treatment efficacy and toxicity of available agents. The treatment options available for patients with metastatic RCC have changed dramatically over the past 6 years. Interferon-α and interleukin-2 were the previous mainstays of therapy, but since December 2005, six new agents have been approved in the US for the treatment of advanced RCC. Three are multi-targeted tyrosine kinase inhibitors (TKI) including sunitinib, sorafenib, and pazopanib, two target the mammalian target of rapamycin (temsirolimus and everolimus), and one is a humanized monoclonal antibody (bevacizumab in combination with interferon-α). The current review focuses on the newest TKI available to treat patients with metastatic RCC, pazopanib. The development of this agent both preclinically and clinically is reviewed. The efficacy and safety data from the pivotal clinical trials are discussed, and the potential role of pazopanib in the treatment of patients with metastatic RCC in comparison to other treatment alternatives is critically appraised. This agent has a favorable overall risk benefit, and the available data demonstrate efficacy in patients with metastatic RCC who are either treatment-naïve or cytokine refractory. It therefore represents another alternative for treatment of metastatic RCC patients

    The optimization of sol-gels as sensing arrays and the testing of sol-gel precursors through the use of fluorescence measurements of eosin-y

    Get PDF
    The purpose of the first project, performed in collaboration with Professor Frank Bright of SUNY at Buffalo, was to optimize the conditions and variables for a Cartesian Technologies Pinprinter to print reproducible spots of sol-gels doped with Ruthenium Diphenylphenathrene (Ru(dpp)32+), an oxygen-sensing complex, on microscope slides. We attempted to optimize these variables by l) the alteration of the printing speed of the sol-gel microarrays, 2) variation of the drying temperature of the gels after they had been printed, 3) controlling the reaction rate of the sol-gel, and 4) various methods of slide pre-treatment. We found that a print speed of 10-25ms, drying the sol-gels at room temperature and no spin-coating over the microarrays were the most optimal results, and the resulting microarrays could be employed for analytical chemistry research purposes. The primary purpose of the second project was to create an effective pH sensor through the use of Eosin-Y within a sol-gel monolith matrix. The most effective precursor(s) must meet the criteria of adherence to a linear plot of fluorescence intensity versus concentration of encapsulated Eosin-Y, reversibility of the sensing capabilities as close to 100% as possible, and minimal cracking in the monolith. The precursors tested were TMOS, TEOS, n-propyl TMOS/ TMOS, methyl-TMOS/ TMOS and phenyl TEOS/ TEOS. It was found that the ormosils n-propyl TMOS/TMOS and methyl TMOS/ TMOS yielded the most effective sensors, overall. The use of Eosin-Y as an indicator for reaction rate of the sol-gel was also explored, as its emission spectra shifts when the ratio of water to ethanol in the solvent is varied

    Third Generation Tyrosine Kinase Inhibitors and Their Development in Advanced Renal Cell Carcinoma

    Get PDF
    Angiogenesis in general and the vascular endothelial growth factor (VEGF) signaling axis in particular is a validated target in renal cell carcinoma (RCC). Clear-cell carcinoma of the kidney is now recognized as a malignancy that is sensitive to inhibitors of the VEGF pathway. Treatment options for patients with metastatic renal cell carcinoma have evolved in dramatic fashion over the past 6 years, and a new paradigm has developed. The cytokines interferon-α and interleukin-2 were previously utilized for therapy, but since December 2005, six new agents have been approved in the United States for the treatment of advanced RCC. Two are tyrosine kinase inhibitors (TKI’s) including sunitinib and recently pazopanib, and the multikinase inhibitor sorafenib. The current review examines the evolving data with the next generation of TKI’s, axitinib and tivozanib being developed for the treatment of advanced RCC. These agents were synthesized to provide increased target specificity and enhanced target inhibition. The preclinical and clinical data are examined, an overview of the development of these TKI’s is provided, and discussion plus speculation concerning their potential roles as RCC therapy is provided

    The optimization of sol-gels as sensing arrays and the testing of sol-gel precursors through the use of fluorescence measurements of eosin-y

    Get PDF
    The purpose of the first project, performed in collaboration with Professor Frank Bright of SUNY at Buffalo, was to optimize the conditions and variables for a Cartesian Technologies Pinprinter to print reproducible spots of sol-gels doped with Ruthenium Diphenylphenathrene (Ru(dpp)32+), an oxygen-sensing complex, on microscope slides. We attempted to optimize these variables by l) the alteration of the printing speed of the sol-gel microarrays, 2) variation of the drying temperature of the gels after they had been printed, 3) controlling the reaction rate of the sol-gel, and 4) various methods of slide pre-treatment. We found that a print speed of 10-25ms, drying the sol-gels at room temperature and no spin-coating over the microarrays were the most optimal results, and the resulting microarrays could be employed for analytical chemistry research purposes. The primary purpose of the second project was to create an effective pH sensor through the use of Eosin-Y within a sol-gel monolith matrix. The most effective precursor(s) must meet the criteria of adherence to a linear plot of fluorescence intensity versus concentration of encapsulated Eosin-Y, reversibility of the sensing capabilities as close to 100% as possible, and minimal cracking in the monolith. The precursors tested were TMOS, TEOS, n-propyl TMOS/ TMOS, methyl-TMOS/ TMOS and phenyl TEOS/ TEOS. It was found that the ormosils n-propyl TMOS/TMOS and methyl TMOS/ TMOS yielded the most effective sensors, overall. The use of Eosin-Y as an indicator for reaction rate of the sol-gel was also explored, as its emission spectra shifts when the ratio of water to ethanol in the solvent is varied

    The optimization of sol-gels as sensing arrays and the testing of sol-gel precursors through the use of fluorescence measurements of eosin-y

    Get PDF
    The purpose of the first project, performed in collaboration with Professor Frank Bright of SUNY at Buffalo, was to optimize the conditions and variables for a Cartesian Technologies Pinprinter to print reproducible spots of sol-gels doped with Ruthenium Diphenylphenathrene (Ru(dpp)32+), an oxygen-sensing complex, on microscope slides. We attempted to optimize these variables by l) the alteration of the printing speed of the sol-gel microarrays, 2) variation of the drying temperature of the gels after they had been printed, 3) controlling the reaction rate of the sol-gel, and 4) various methods of slide pre-treatment. We found that a print speed of 10-25ms, drying the sol-gels at room temperature and no spin-coating over the microarrays were the most optimal results, and the resulting microarrays could be employed for analytical chemistry research purposes. The primary purpose of the second project was to create an effective pH sensor through the use of Eosin-Y within a sol-gel monolith matrix. The most effective precursor(s) must meet the criteria of adherence to a linear plot of fluorescence intensity versus concentration of encapsulated Eosin-Y, reversibility of the sensing capabilities as close to 100% as possible, and minimal cracking in the monolith. The precursors tested were TMOS, TEOS, n-propyl TMOS/ TMOS, methyl-TMOS/ TMOS and phenyl TEOS/ TEOS. It was found that the ormosils n-propyl TMOS/TMOS and methyl TMOS/ TMOS yielded the most effective sensors, overall. The use of Eosin-Y as an indicator for reaction rate of the sol-gel was also explored, as its emission spectra shifts when the ratio of water to ethanol in the solvent is varied

    Muon-spin rotation measurements of the penetration depth of the Mo_3Sb_7 superconductor

    Full text link
    Measurements of the magnetic field penetration depth \lambda in superconductor Mo_3Sb_7 (T_c~2.1 K) were carried out by means of muon-spin-rotation. The absolute values of \lambda, the Ginzburg-Landau parameter \kappa, the first H_{c1} and the second H_{c2} critical fields at T=0 are \lambda(0)=720(100)nm, \kappa(0)=55(9), \mu_0H_{c1}(0)=1.8(3)mT, and \mu_0H_{c2}(0)=1.9(2)T. The zero temperature value of the superconducting energy gap \Delta(0) was found to be 0.35(1)meV corresponding to the ratio 2\Delta(0)/k_BT_c=3.83(10). At low temperatures \lambda^{-2}(T) saturates and becomes constant below T~0.3T_c, in agreement with what is expected for s-wave BCS superconductors. Our results suggest that Mo_3Sb_7 is a BCS superconductor with the isotropic energy gapComment: 5 pages, 4 figure
    corecore