3,358 research outputs found

    Clues to Quasar Broad Line Region Geometry and Kinematics

    Get PDF
    We present evidence that the high-velocity CIV lambda 1549 emission line gas of radio-loud quasars may originate in a disk-like configuration, in close proximity to the accretion disk often assumed to emit the low-ionization lines. For a sample of 36 radio-loud z~2 quasars we find the 20--30% peak width to show significant inverse correlations with the fractional radio core-flux density, R, the radio axis inclination indicator. Highly inclined systems have broader line wings, consistent with a high-velocity field perpendicular to the radio axis. By contrast, the narrow line-core shows no such relation with R, so the lowest velocity CIV-emitting gas has an inclination independent velocity field. We propose that this low-velocity gas is located at higher disk-altitudes than the high-velocity gas. A planar origin of the high-velocity CIV-emission is consistent with the current results and with an accretion disk-wind emitting the broad lines. A spherical distribution of randomly orbiting broad-line clouds and a polar high-ionization outflow are ruled out.Comment: 5 Latex pages, 1 figure, accepted for publication in ApJ Letter

    Entanglement scaling in critical two-dimensional fermionic and bosonic systems

    Full text link
    We relate the reduced density matrices of quadratic bosonic and fermionic models to their Green's function matrices in a unified way and calculate the scaling of bipartite entanglement of finite systems in an infinite universe exactly. For critical fermionic 2D systems at T=0, two regimes of scaling are identified: generically, we find a logarithmic correction to the area law with a prefactor dependence on the chemical potential that confirms earlier predictions based on the Widom conjecture. If, however, the Fermi surface of the critical system is zero-dimensional, we find an area law with a sublogarithmic correction. For a critical bosonic 2D array of coupled oscillators at T=0, our results show that entanglement follows the area law without corrections.Comment: 4 pages, 4 figure

    On codimension two flats in Fermat-type arrangements

    Full text link
    In the present note we study certain arrangements of codimension 22 flats in projective spaces, we call them "Fermat arrangements". We describe algebraic properties of their defining ideals. In particular, we show that they provide counterexamples to an expected containment relation between ordinary and symbolic powers of homogeneous ideals.Comment: 9 page

    Phase diagram of an extended quantum dimer model on the hexagonal lattice

    Get PDF
    We introduce a quantum dimer model on the hexagonal lattice that, in addition to the standard three-dimer kinetic and potential terms, includes a competing potential part counting dimer-free hexagons. The zero-temperature phase diagram is studied by means of quantum Monte Carlo simulations, supplemented by variational arguments. It reveals some new crystalline phases and a cascade of transitions with rapidly changing flux (tilt in the height language). We analyze perturbatively the vicinity of the Rokhsar-Kivelson point, showing that this model has the microscopic ingredients needed for the "devil's staircase" scenario [E. Fradkin et al., Phys. Rev. B 69, 224415 (2004)], and is therefore expected to produce fractal variations of the ground-state flux.Comment: Published version. 5 pages + 8 (Supplemental Material), 31 references, 10 color figure

    Interlaced Dynamical Decoupling and Coherent Operation of a Singlet-Triplet Qubit

    Full text link
    We experimentally demonstrate coherence recovery of singlet-triplet superpositions by interlacing qubit rotations between Carr-Purcell (CP) echo sequences. We then compare performance of Hahn, CP, concatenated dynamical decoupling (CDD) and Uhrig dynamical decoupling (UDD) for singlet recovery. In the present case, where gate noise and drift combined with spatially varying hyperfine coupling contribute significantly to dephasing, and pulses have limited bandwidth, CP and CDD yield comparable results, with T2 ~ 80 microseconds.Comment: related papers at http://marcuslab.harvard.ed

    Rapid Single-Shot Measurement of a Singlet-Triplet Qubit

    Get PDF
    We report repeated single-shot measurements of the two-electron spin state in a GaAs double quantum dot. The readout scheme allows measurement with fidelity above 90% with a 7 microsecond cycle time. Hyperfine-induced precession between singlet and triplet states of the two-electron system are directly observed, as nuclear Overhauser fields are quasi-static on the time scale of the measurement cycle. Repeated measurements on millisecond to second time scales reveal evolution of the nuclear environment.Comment: supplemental material at http://marcuslab.harvard.edu/papers/single_shot_sup.pd
    corecore