109 research outputs found
Mitochondria-targeted nanomedicines for cardiovascular applications
Mitochondria are increasingly a target for drug delivery in cardiovascular diseases. This editorial describes how a nanomedicine approach may improve drug potency and efficacy in a safe and controlled manner
Maintaining energy provision in the heart: the creatine kinase system in ischaemia–reperfusion injury and chronic heart failure
The non-stop provision of chemical energy is of critical importance to normal cardiac function, requiring the rapid turnover of ATP to power both relaxation and contraction. Central to this is the creatine kinase (CK) phosphagen system, which buffers local ATP levels to optimise the energy available from ATP hydrolysis, to stimulate energy production via the mitochondria and to smooth out mismatches between energy supply and demand. In this review, we discuss the changes that occur in high-energy phosphate metabolism (i.e., in ATP and phosphocreatine) during ischaemia and reperfusion, which represents an acute crisis of energy provision. Evidence is presented from preclinical models that augmentation of the CK system can reduce ischaemia–reperfusion injury and improve functional recovery. Energetic impairment is also a hallmark of chronic heart failure, in particular, down-regulation of the CK system and loss of adenine nucleotides, which may contribute to pathophysiology by limiting ATP supply. Herein, we discuss the evidence for this hypothesis based on preclinical studies and in patients using magnetic resonance spectroscopy. We conclude that the correlative evidence linking impaired energetics to cardiac dysfunction is compelling; however, causal evidence from loss-of-function models remains equivocal. Nevertheless, proof-of-principle studies suggest that augmentation of CK activity is a therapeutic target to improve cardiac function and remodelling in the failing heart. Further work is necessary to translate these findings to the clinic, in particular, a better understanding of the mechanisms by which the CK system is regulated in disease
Mitochondria-targeted nanomedicines for cardiovascular applications
Mitochondria are increasingly a target for drug delivery in cardiovascular diseases. This editorial describes how a nanomedicine approach may improve drug potency and efficacy in a safe and controlled manner
Ribose supplementation alone or with elevated creatine does not preserve high energy nucleotides or cardiac function in the failing mouse heart
Background: Reduced levels of creatine and total adenine nucleotides (sum of ATP, ADP and AMP) are hallmarks of chronic
heart failure and restoring these pools is predicted to be beneficial by maintaining the diseased heart in a more favourable
energy state. Ribose supplementation is thought to support both salvage and re-synthesis of adenine nucleotides by
bypassing the rate-limiting step. We therefore tested whether ribose would be beneficial in chronic heart failure in control
mice and in mice with elevated myocardial creatine due to overexpression of the creatine transporter (CrT-OE).
Methods and Results: Four groups were studied: sham; myocardial infarction (MI); MI+ribose; MI+CrT-OE+ribose. In a pilot
study, ribose given in drinking water was bioavailable, resulting in a two-fold increase in myocardial ribose-5-phosphate
levels. However, 8 weeks post-surgery, total adenine nucleotide (TAN) pool was decreased to a similar amount (8–14%) in all
infarcted groups irrespective of the treatment received. All infarcted groups also presented with a similar and substantial
degree of left ventricular (LV) dysfunction (3-fold reduction in ejection fraction) and LV hypertrophy (32–47% increased
mass). Ejection fraction closely correlated with infarct size independently of treatment (r2 = 0.63, p<0.0001), but did not
correlate with myocardial creatine or TAN levels.
Conclusion: Elevating myocardial ribose and creatine levels failed to maintain TAN pool or improve post-infarction LV
remodeling and function. This suggests that ribose is not rate-limiting for purine nucleotide biosynthesis in the chronically
failing mouse heart and that alternative strategies to preserve TAN pool should be investigated
Highly accelerated cardiac functional MRI in rodent hearts using compressed sensing and parallel imaging at 9.4T
Summary.
Parallel Imaging and Compressed Sensing have individually been shown to speed up cardiac functional MRI in mice and rats at ultra-high magnetic fields whilst providing accurate measurement of the physiologically relevant parameters. This study demonstrates that the acquisition time for cine-MRI in rodent hearts can be significantly reduced further by combining both techniques
Myocardial creatine levels do not influence response to acute oxidative stress in isolated perfused heart
Background: Multiple studies suggest creatine mediates anti-oxidant activity in addition to its established role in cellular
energy metabolism. The functional significance for the heart has yet to be established, but antioxidant activity could
contribute to the cardioprotective effect of creatine in ischaemia/reperfusion injury.
Objectives: To determine whether intracellular creatine levels influence responses to acute reactive oxygen species (ROS)
exposure in the intact beating heart. We hypothesised that mice with elevated creatine due to over-expression of the
creatine transporter (CrT-OE) would be relatively protected, while mice with creatine-deficiency (GAMT KO) would fare
worse.
Methods and Results: CrT-OE mice were pre-selected for creatine levels 20–100% above wild-type using in vivo 1
H–
MRS.
Hearts were perfused in isovolumic Langendorff mode and cardiac function monitored throughout. After 20 min
equilibration, hearts were perfused with either H2O2 0.5 mM (30 min), or the anti-neoplastic drug doxorubicin 15 mM
(100 min). Protein carbonylation, creatine kinase isoenzyme activities and phospho-PKCd expression were quantified in
perfused hearts as markers of oxidative damage and apoptotic signalling. Wild-type hearts responded to ROS challenge
with a profound decline in contractile function that was ameliorated by co-administration of catalase or dexrazoxane as
positive controls. In contrast, the functional deterioration in CrT-OE and GAMT KO hearts was indistinguishable from wildtype
controls, as was the extent of oxidative damage and apoptosis. Exogenous creatine supplementation also failed to
protect hearts from doxorubicin-induced dysfunction.
Conclusions: Intracellular creatine levels do not influence the response to acute ROS challenge in the intact beating heart,
arguing against creatine exerting (patho-)physiologically relevant anti-oxidant activity
Refinement of analgesia following thoracotomy and experimental myocardial infarction using the Mouse Grimace Scale
New Findings
What is the central question of this study?
There is an ethical imperative to optimize analgesia protocols for laboratory animals, but this is impeded by our inability to recognize pain reliably. We examined whether the Mouse Grimace Scale (MGS) provides benefits over a standard welfare scoring system for identifying a low level of pain in the frequently used murine surgical model of myocardial infarction.
What is the main finding and its importance?
Low-level pain, responsive to analgesia, was detected by MGS but not standard methods. In this model, most of the pain is attributable to the thoracotomy, excepted in mice with very large infarcts. This approach represents a model for assessing postsurgical analgesia in rodents.
The Mouse Grimace Scale (MGS) was developed for assessing pain severity, but the general applicability to complex postsurgical pain has not been established. We sought to determine whether the MGS provides benefits over and above a standard welfare scoring system for identifying pain in mice following experimental myocardial infarction. Female C57BL/6J mice (n = 60), anaesthetized with isoflurane, were subjected to thoracotomy with ligation of a coronary artery or sham procedure. A single s.c. dose of buprenorphine (1.1 mg kg−1) was given at the time of surgery and pain assessed at 24 h by MGS and a procedure-specific welfare scoring system. In some animals, a second dose of 0.6 mg kg−1 buprenorphine was given and pain assessment repeated after 30 min. The MGS was scored from multiple photographs by two independent blinded observers with good correlation (r = 0.98). Using the average MGS score of both observers, we identified a subset of mice with low scores that were not considered to be in pain by the welfare scoring system or by single observer MGS. These mice showed a significant improvement with additional analgesia, suggesting that this low-level pain is real. Pain attributable to the myocardial injury, as opposed to thoracotomy, persisted at 24 h only in mice with large infarcts >40%. In conclusion, the use of a multi-observer, post hoc version of the MGS is a sensitive tool to assess the efficacy of postsurgical analgesic protocols. Following surgical induction of myocardial infarction, we identified a significant proportion of mice that were in low-level pain at 24 h that were not identified by other assessment methods
Improved method for quantification of regional cardiac function in mice using phase-contrast MRI
Phase-contrast magnetic resonance imaging is a technique that allows for characterization of regional cardiac function and for measuring transmural myocardial velocities in human hearts with high temporal and spatial resolution. The application of this technique (also known as tissue phase mapping) to murine hearts has been very limited so far. The aim of our study was to implement and to optimize tissue phase mapping for a comprehensive assessment of murine transmural wall motion. Baseline values for regional motion patterns in mouse hearts, based on the clinically used American Heart Association's 17-segment model, were established, and a detailed motion analysis of mouse heart for the entire cardiac cycle (including epicardial and endocardial motion patterns) is provided. Black-blood contrast was found to be essential to obtain reproducible velocity encoding. Tissue phase mapping of the mouse heart permits the detailed assessment of regional myocardial velocities. While a proof-of-principle application in a murine ischemia–reperfusion model was performed, future studies are warranted to assess its potential for the investigation of systolic and diastolic functions in genetically and surgically manipulated mouse models of human heart disease. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc
Accurate infarct-size measurements from accelerated, compressed sensing reconstructed cine-MRI images in mouse hearts
Three-fold accelerated cine-MRI followed by Compressed Sensing reconstruction has been shown to provide accurate measurement of cardiac functional parameters in normal and chronically infarcted mouse hearts. This study demonstrates that infarct size can also be accurately quantified from the three-fold undersampled cine-data
Dietary Supplementation with Homoarginine Preserves Cardiac Function in a Murine Model of Post-Myocardial Infarction Heart Failure
Low plasma homoarginine (HA) is an emerging biomarker for cardiovascular disease and an independent predictor of mortality in patients with heart failure. Plasma levels appear to reflect cardiac dysfunction, positively correlating with ejection fraction and inversely with circulating brain natriuretic peptide. However, whether this outcome is a bystander or cause-and-effect has yet to be established. Within the context of stroke, a direct causal relationship has been inferred because normal mice pretreated with 14 mg/L HA had a smaller stroke size. In the present study, we show for the first time that dietary supplementation with HA improves cardiac function in the setting of chronic heart failure, suggesting a novel preventive strategy and inferring that low HA levels may be inherently detrimental because of a loss of this effect
- …