10,254 research outputs found
How Does Adolescent Fertility Affect the Human Capital and Wages of Young Women?
The consequences of teen childbearing for the future well-being of young women remain controversial. In this paper, we model and estimate the relationship between early childbearing and human capital investment, and its effect on wages in early adulthood. Taking advantage of a large set of potential instruments for fertility—principally state- and county-level indicators of the costs of fertility and fertility control—we use instrumental variables procedures to generate unbiased estimates of the effects of early fertility on education and work experience, and the effects of these outcomes on adult wages. For both black and white women, adolescent fertility substantially reduces years of formal education and teenage work experience. White teenage mothers also obtain less early adult work experience than young women who delay childbearing. We also find that, through these human capital effects, teenage childbearing has a significant effect on a young woman’s market wage at age 25. Our results, unlike those of recent “revisionist” studies, suggest that public policies that reduce teenage childbearing are likely to have positive effects on the economic well-being of many young mothers and their families.
Instrument selection: The case of teenage childbearing and women's educational attainment
Recent research has identified situations in which instrumental variables (IV) estimators are severely biased and has suggested diagnostic tests to identify such situations. We suggest a number of alternative techniques for choosing a set of instruments that satisfy these tests from a universe of a priori plausible candidates, and we apply them to a study of the effects of adolescent childbearing on the educational attainment of young women. We find that substantive results are sensitive to instrument choice, and make two recommendations to the practical researcher: First, it is prudent to begin with a large set of potential instruments, when possible, and pare it down through formal testing rather than to rely on a minimal instrument set justified on a priori grounds. Second, the application of more restrictive tests of instrument validity and relevance can yield results very different from those based on less restrictive tests that produce a more inclusive set of instruments, and is the preferred, conservative approach when improper instrument choice can lead to biased estimates.
Lessons from dynamic cadaver and invasive bone pin studies: do we know how the foot really moves during gait?
Background: This paper provides a summary of a Keynote lecture delivered at the 2009 Australasian Podiatry Conference. The aim of the paper is to review recent research that has adopted dynamic cadaver and invasive kinematics research approaches to better understand foot
and ankle kinematics during gait. It is not intended to systematically cover all literature related to foot and ankle kinematics (such as research using surface mounted markers). Since the paper is based on a keynote presentation its focuses on the authors own experiences and work in the main, drawing on the work of others where appropriate
Methods: Two approaches to the problem of accessing and measuring the kinematics of individual anatomical structures in the foot have been taken, (i) static and dynamic cadaver models, and (ii) invasive in-vivo research. Cadaver models offer the advantage that there is complete access to all the tissues of the foot, but the cadaver must be manipulated and loaded in a manner which replicates how the foot would have performed when in-vivo. The key value of invasive in-vivo foot kinematics research is the validity of the description of foot kinematics, but the key difficulty is how generalisable this data is to the wider population.
Results: Through these techniques a great deal has been learnt. We better understand the valuable contribution mid and forefoot joints make to foot biomechanics, and how the ankle and subtalar joints can have almost comparable roles. Variation between people in foot kinematics is high and
normal. This includes variation in how specific joints move and how combinations of joints move. The foot continues to demonstrate its flexibility in enabling us to get from A to B via a large number of different kinematic solutions.
Conclusion: Rather than continue to apply a poorly founded model of foot type whose basis is to make all feet meet criteria for the mechanical 'ideal' or 'normal' foot, we should embrace variation between feet and identify it as an opportunity to develop patient-specific clinical models of foot function
SBASI: Actuated pyrotechnic time delay initiator
A precision pyrotechnic time delay initiator for missile staging was developed and tested. Incorporated in the assembly is a single bridgewire Apollo standard initiator (SBASI) for initiation, a through-bulkhead-initiator to provide isolation of the SBASI output from the delay, the pyrotechnic delay, and an output charge. An attempt was made to control both primary and secondary variables affecting functional performance of the delay initiator. Design and functional limit exploration was performed to establish tolerance levels on manufacturing and assembling operations. The test results demonstrate a 2% coefficient of variation at any one temperature and an overall 2.7% coefficient of variation throughout the temperature range of 30 to 120 F. Tests were conducted at simulated operational altitude from sea level to 200,000 feet
Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations
Post-hoc explanations of machine learning models are crucial for people to
understand and act on algorithmic predictions. An intriguing class of
explanations is through counterfactuals, hypothetical examples that show people
how to obtain a different prediction. We posit that effective counterfactual
explanations should satisfy two properties: feasibility of the counterfactual
actions given user context and constraints, and diversity among the
counterfactuals presented. To this end, we propose a framework for generating
and evaluating a diverse set of counterfactual explanations based on
determinantal point processes. To evaluate the actionability of
counterfactuals, we provide metrics that enable comparison of
counterfactual-based methods to other local explanation methods. We further
address necessary tradeoffs and point to causal implications in optimizing for
counterfactuals. Our experiments on four real-world datasets show that our
framework can generate a set of counterfactuals that are diverse and well
approximate local decision boundaries, outperforming prior approaches to
generating diverse counterfactuals. We provide an implementation of the
framework at https://github.com/microsoft/DiCE.Comment: 13 page
Studies of an orbital gradiometer mission
The goal of using an orbital gradiometer mission to provide an accurate (1 to 2 mgal), high resolution (1 by 1 deg), global map of the earth's geopotential is currently being investigated. This investigation involves the simulation of the satellite ephemeris and the corresponding gradiometer measurements which can be used in the study of various techniques and methodologies that were proposed to recover the parameters used in modeling the geopotential. Also, the effects on the mission of various time varying forces acting on the spacecraft were included in the studies
Reversible plasticity in amorphous materials
A fundamental assumption in our understanding of material rheology is that
when microscopic deformations are reversible, the material responds elastically
to external loads. Plasticity, i.e. dissipative and irreversible macroscopic
changes in a material, is assumed to be the consequence of irreversible
microscopic events. Here we show direct evidence for reversible plastic events
at the microscopic scale in both experiments and simulations of two-dimensional
foam. In the simulations, we demonstrate a link between reversible plastic
rearrangement events and pathways in the potential energy landscape of the
system. These findings represent a fundamental change in our understanding of
materials--microscopic reversibility does not necessarily imply elasticity.Comment: Revised pape
Experimental f-value and isotopic structure for the Ni I line blended with [OI] at 6300A
We have measured the oscillator strength of the Ni I line at 6300.34 \AA,
which is known to be blended with the forbidden [O I] 6300 line, used
for determination of the oxygen abundance in cool stars. We give also
wavelengths of the two isotopic line components of Ni and Ni
derived from the asymmetric laboratory line profile. These two line components
of Ni I have to be considered when calculating a line profile of the 6300 \AA\
feature observed in stellar and solar spectra. We also discuss the labelling of
the energy levels involved in the Ni I line, as level mixing makes the
theoretical predictions uncertain.Comment: Accepted for publication in ApJLetter
Guanosine nucleotides regulate B2 kinin receptor affinity of agonists but not of antagonists: Discussion of a model proposing receptor precoupling to G protein
The effect of nucleotides on binding of the B2 kinin (BK) receptor agonist {[}H-3]BK and the antagonist {[}H-3]NPC17731 to particulate fractions of human foreskin fibroblasts was studied. At 0 degrees C, particulate fractions exhibited a single class of binding sites with a Kd of 2.3 nM for {[}H-3]BK and a K-d Of 3.8 nM for the antagonist {[}H-3]NPC17731. Incubation with radioligands at 37 degrees C for 5 min gave a reduction of agonist, as well as antagonist, binding that was between 0-40% depending on the preparation, even in the absence of guanosine nucleotides. As shown by Scatchard analysis, this reduction in specific binding was due to a shift in the affinity of at least a fraction of the receptors. The presence at 37 degrees C of the guanine nucleotides GTP, GDP and their poorly hydrolyzable analogs left {[}H-3]-NPC17731 binding unaffected, but reduced the receptor affinity for {[}H-3]BK to a K-d Of about 15 nM. The maximal number of receptors, however, was unchanged. This affinity change was strongly dependent on the presence of bivalent cations, in particular Mg2+. It was reversed by incubation at 0 degrees C, The rank order of the guanosine nucleotides for {[}H-3]BK binding reduction was GTP{[}gamma S] = Gpp{[}NH]p > GTP = GDP > GDP{[}beta S]. GMP, ATP, ADP and AMP showed no influence on agonist binding. A model for the interaction of the B2 kinin receptor with G proteins is discussed
- …