201 research outputs found
Giant crystal-electric-field effect and complex magnetic behavior in single-crystalline CeRh3Si2
Single-crystalline CeRh3Si2 was investigated by means of x-ray diffraction,
magnetic susceptibility, magnetization, electrical resistivity, and specific
heat measurements carried out in wide temperature and magnetic field ranges.
Moreover, the electronic structure of the compound was studied at room
temperature by cerium core-level x-ray photoemission spectroscopy (XPS). The
physical properties were analyzed in terms of crystalline electric field and
compared with results of ab-initio band structure calculations performed within
the density functional theory approach. The compound was found to crystallize
in the orthorhombic unit cell of the ErRh3Si2 type (space group Imma -- No.74,
Pearson symbol: oI24) with the lattice parameters: a = 7.1330(14) A, b =
9.7340(19) A, and c = 5.6040(11) A. Analysis of the magnetic and XPS data
revealed the presence of well localized magnetic moments of trivalent cerium
ions. All physical properties were found to be highly anisotropic over the
whole temperature range studied, and influenced by exceptionally strong
crystalline electric field with the overall splitting of the 4f1 ground
multiplet exceeding 5700 K. Antiferromagnetic order of the cerium magnetic
moments at TN = 4.70(1)K and their subsequent spin rearrangement at Tt =
4.48(1) K manifest themselves as distinct anomalies in the temperature
characteristics of all investigated physical properties and exhibit complex
evolution in an external magnetic field. A tentative magnetic B-T phase
diagram, constructed for B parallel to the b-axis being the easy magnetization
direction, shows very complex magnetic behavior of CeRh3Si2, similar to that
recently reported for an isostructural compound CeIr3Si2. The electronic band
structure calculations corroborated the antiferromagnetic ordering of the
cerium magnetic moments and well reproduced the experimental XPS valence band
spectrum.Comment: 32 pages, 12 figures, to appear in Physical Review
Structural Phase Transition in the 2D Spin Dimer Compound SrCu2(BO3)2
A displacive, 2nd order structural phase transition at Ts=395 K from space
group I`4 2 m below Ts to I 4/m c m above Ts has been discovered in the
two-dimensional spin dimer compound SrCu2(BO3)2. The temperature evolution of
the structure in both phases has been studied by X-ray diffraction and Raman
scattering, supplemented by differential scanning calorimetry and SQUID
magnetometry. The implications of this transition and of the observed phonon
anomalies in Raman scattering for spin-phonon and interlayer coupling in this
quantum spin system will be discussed.Comment: 13pages, 13 figure
converging evidence from an intermediate phenotype approach
Representing a phylogenetically old and very basic mechanism of inhibitory
neurotransmission, glycine receptors have been implicated in the modulation of
behavioral components underlying defensive responding toward threat. As one of
the first findings being confirmed by genome-wide association studies for the
phenotype of panic disorder and agoraphobia, allelic variation in a gene
coding for the glycine receptor beta subunit (GLRB) has recently been
associated with increased neural fear network activation and enhanced acoustic
startle reflexes. On the basis of two independent healthy control samples, we
here aimed to further explore the functional significance of the GLRB genotype
(rs7688285) by employing an intermediate phenotype approach. We focused on the
phenotype of defensive system reactivity across the levels of brain function,
structure, and physiology. Converging evidence across both samples was found
for increased neurofunctional activation in the (anterior) insular cortex in
GLRB risk allele carriers and altered fear conditioning as a function of
genotype. The robustness of GLRB effects is demonstrated by consistent
findings across different experimental fear conditioning paradigms and
recording sites. Altogether, findings provide translational evidence for
glycine neurotransmission as a modulator of the brain’s evolutionary old
dynamic defensive system and provide further support for a strong,
biologically plausible candidate intermediate phenotype of defensive
reactivity. As such, glycine-dependent neurotransmission may open up new
avenues for mechanistic research on the etiopathogenesis of fear and anxiety
disorders
Altered top-down and bottom-up processing of fear conditioning in panic disorder with agoraphobia
Background: Although several neurophysiological models have been proposed for panic disorder with agoraphobia (PD/AG), there is limited evidence from functional magnetic resonance imaging (fMRI) studies on key neural networks in PD/AG. Fear conditioning has been proposed to represent a central pathway for the development and maintenance of this disorder; however, its neural substrates remain elusive. The present study aimed to investigate the neural correlates of fear conditioning in PD/AG patients.
Method: The blood oxygen level-dependent (BOLD) response was measured using fMRI during a fear conditioning task. Indicators of differential conditioning, simple conditioning and safety signal processing were investigated in 60 PD/AG patients and 60 matched healthy controls.
Results: Differential conditioning was associated with enhanced activation of the bilateral dorsal inferior frontal gyrus (IFG) whereas simple conditioning and safety signal processing were related to increased midbrain activation in PD/AG patients versus controls. Anxiety sensitivity was associated positively with the magnitude of midbrain activation.
Conclusions: The results suggest changes in top-down and bottom-up processes during fear conditioning in PD/AG that can be interpreted within a neural framework of defensive reactions mediating threat through distal (forebrain) versus proximal (midbrain) brain structures. Evidence is accumulating that this network plays a key role in the aetiopathogenesis of panic disorder
Calculating the energy spectra of magnetic molecules: application of real- and spin-space symmetries
The determination of the energy spectra of small spin systems as for instance
given by magnetic molecules is a demanding numerical problem. In this work we
review numerical approaches to diagonalize the Heisenberg Hamiltonian that
employ symmetries; in particular we focus on the spin-rotational symmetry SU(2)
in combination with point-group symmetries. With these methods one is able to
block-diagonalize the Hamiltonian and thus to treat spin systems of
unprecedented size. In addition it provides a spectroscopic labeling by
irreducible representations that is helpful when interpreting transitions
induced by Electron Paramagnetic Resonance (EPR), Nuclear Magnetic Resonance
(NMR) or Inelastic Neutron Scattering (INS). It is our aim to provide the
reader with detailed knowledge on how to set up such a diagonalization scheme.Comment: 29 pages, many figure
ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries
This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors
Шляхи підвищення ефективності використання виробничих ресурсів сільськогосподарських підприємств
Single-phase polycrystalline samples and single crystals of the complex boride phases Ti8Fe3Ru18B8 and Ti7Fe4Ru18B8 have been synthesized by arc melting the elements. The phases were characterized by powder and single-crystal X-ray diffraction as well as energy-dispersive X-ray analysis. They are new substitutional variants of the Zn11Rh18B8 structure type, space group P4/mbm (no. 127). The particularity of their crystal structure lies in the simultaneous presence of dumbbells which form ladders of magnetically active iron atoms along the [001] direction and two additional mixed iron/titanium chains occupying Wyckoff sites 4h and 2b. The ladder substructure is ca. 3.0 Å from the two chains at the 4h, which creates the sequence chain–ladder–chain, establishing a new structural and magnetic motif, the scaffold. The other chain (at 2b) is separated by at least 6.5 Å from this scaffold. According to magnetization measurements, Ti8Fe3Ru18B8 and Ti7Fe4Ru18B8 order ferrimagnetically below 210 and 220 K, respectively, with the latter having much higher magnetic moments than the former. However, the magnetic moment observed for Ti8Fe3Ru18B8 is unexpectedly smaller than the recently reported Ti9Fe2Ru18B8 ferromagnet. The variation of the magnetic moments observed in these new phases can be adequately understood by assuming a ferrimagnetic ordering involving the three different iron sites. Furthermore, the recorded hysteresis loops indicate a semihard magnetic behavior for the two phases. The highest Hc value (28.6 kA/m), measured for Ti7Fe4Ru18B8, lies just at the border of those of hard magnetic materials
Recommended from our members
ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries.
This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors
- …