42 research outputs found

    Andreev reflection in Si-engineered Al/InGaAs hybrid junctions

    Full text link
    Andreev-reflection dominated transport is demonstrated in Al/n-In0.38Ga0.62As superconductor-semiconductor junctions grown by molecular beam epitaxy on GaAs(001). High junction transparency was achieved in low-doped devices by exploiting Si interface bilayers to suppress the native Schottky barrier. It is argued that this technique is ideally suited for the fabrication of ballistic transport hybrid microstructures.Comment: 9 REVTEX pages + 3 postscript figures, to be published in APL 73, (28dec98

    Light-matter excitations in the ultra-strong coupling regime

    Get PDF
    In a microcavity, light-matter coupling is quantified by the vacuum Rabi frequency ΩR\Omega_R. When ΩR\Omega_R is larger than radiative and non-radiative loss rates, the system eigenstates (polaritons) are linear superposition of photonic and electronic excitations, a condition actively investigated in diverse physical implementations. Recently, a quantum electrodynamic regime (ultra-strong coupling) was predicted when ΩR\Omega_R becomes comparable to the transition frequency. Here we report unambiguous signatures of this regime in a quantum-well intersubband microcavity. Measuring the cavity-polariton dispersion in a room-temperature linear optical experiment, we directly observe the anti-resonant light-matter coupling and the photon-energy renormalization of the vacuum field

    InAs nanowire hot-electron Josephson transistor

    Full text link
    At a superconductor (S)-normal metal (N) junction pairing correlations can "leak-out" into the N region. This proximity effect [1, 2] modifies the system transport properties and can lead to supercurrent flow in SNS junctions [3]. Recent experimental works showed the potential of semiconductor nanowires (NWs) as building blocks for nanometre-scale devices [4-7], also in combination with superconducting elements [8-12]. Here, we demonstrate an InAs NW Josephson transistor where supercurrent is controlled by hot-quasiparticle injection from normal-metal electrodes. Operational principle is based on the modification of NW electron-energy distribution [13-20] that can yield reduced dissipation and high-switching speed. We shall argue that exploitation of this principle with heterostructured semiconductor NWs opens the way to a host of out-of-equilibrium hybrid-nanodevice concepts [7, 21].Comment: 6 pages, 6 color figure

    Nanoscale spin rectifiers controlled by the Stark effect

    Get PDF
    The control of orbital and spin state of single electrons is a key ingredient for quantum information processing, novel detection schemes, and, more generally, is of much relevance for spintronics. Coulomb and spin blockade (SB) in double quantum dots (DQDs) enable advanced single-spin operations that would be available even for room-temperature applications for sufficiently small devices. To date, however, spin operations in DQDs were observed at sub-Kelvin temperatures, a key reason being that scaling a DQD system while retaining an independent field-effect control on the individual dots is very challenging. Here we show that quantum-confined Stark effect allows an independent addressing of two dots only 5 nm apart with no need for aligned nanometer-size local gating. We thus demonstrate a scalable method to fully control a DQD device, regardless of its physical size. In the present implementation we show InAs/InP nanowire (NW) DQDs that display an experimentally detectable SB up to 10 K. We also report and discuss an unexpected re-entrant SB lifting as a function magnetic-field intensity

    A Josephson Quantum Electron Pump

    Full text link
    A macroscopic fluid pump works according to the law of Newtonian mechanics and transfers a large number of molecules per cycle (of the order of 10^23). By contrast, a nano-scale charge pump can be thought as the ultimate miniaturization of a pump, with its operation being subject to quantum mechanics and with only few electrons or even fractions of electrons transfered per cycle. It generates a direct current in the absence of an applied voltage exploiting the time-dependence of some properties of a nano-scale conductor. The idea of pumping in nanostructures was discussed theoretically a few decades ago [1-4]. So far, nano-scale pumps have been realised only in system exhibiting strong Coulombic effects [5-12], whereas evidence for pumping in the absence of Coulomb-blockade has been elusive. A pioneering experiment by Switkes et al. [13] evidenced the difficulty of modulating in time the properties of an open mesoscopic conductor at cryogenic temperatures without generating undesired bias voltages due to stray capacitances [14,15]. One possible solution to this problem is to use the ac Josephson effect to induce periodically time-dependent Andreev-reflection amplitudes in a hybrid normal-superconducting system [16]. Here we report the experimental detection of charge flow in an unbiased InAs nanowire (NW) embedded in a superconducting quantum interference device (SQUID). In this system, pumping may occur via the cyclic modulation of the phase of the order parameter of different superconducting electrodes. The symmetry of the current with respect to the enclosed magnetic flux [17,18] and bias SQUID current is a discriminating signature of pumping. Currents exceeding 20 pA are measured at 250 mK, and exhibit symmetries compatible with a pumping mechanism in this setup which realizes a Josephson quantum electron pump (JQEP).Comment: 7+ pages, 6 color figure

    Tunnel-assisted manipulation of intersubband polaritons in asymmetric coupled quantum wells

    Full text link
    The authors report the external control of the polariton ground state by manipulating the coupling between the intersubband transition and the photonic mode of a GaAs/AlGaAs microcavity. The vacuum-field Rabi splitting is varied by means of charge transfer between the energetically-aligned ground subbands of asymmetric tunnel-coupled quantum wells. The authors propose the use of this structure concept for implementing ultrafast modulation of intersubband polaritons. (c) 2006 American Institute of Physics

    Vibrational properties of Si/GaAs superlattices

    Full text link
    Raman scattering experiments and first principles phonon calculations have been performed on (Si)m (GaAs)n superlattices grown by molecular beam epitaxy. In spite of the small thickness of the Si layers, folded acoustic modes, confined Si-like and quasi-confined GaAs-like optical modes are clearly observed in the spectra. The experimental frequencies compare well with the calculated ones, confirming that a description of optical phonons in terms of strain- and confinement-induced shifts is appropriate for these novel heterostructures
    corecore