3,969 research outputs found
Heat conduction in 2D strongly-coupled dusty plasmas
We perform non-equilibrium simulations to study heat conduction in
two-dimensional strongly coupled dusty plasmas. Temperature gradients are
established by heating one part of the otherwise equilibrium system to a higher
temperature. Heat conductivity is measured directly from the stationary
temperature profile and heat flux. Particular attention is paid to the
influence of damping effect on the heat conduction. It is found that the heat
conductivity increases with the decrease of the damping rate, while its
magnitude agrees with previous experimental measurement.Comment: 4 pages, 2 figures, presented in SCCS2008 conferenc
The substructure and halo population of the Double Cluster and Persei
In order to study the stellar population and possible substructures in the
outskirts of Double Cluster and Persei, we investigate using the
GAIA DR2 data a sky area of about 7.5 degrees in radius around the Double
Cluster cores. We identify member stars using various criteria, including their
kinematics (viz, proper motion), individual parallaxes, as well as photometric
properties. A total of 2186 member stars in the parameter space were identified
as members. Based on the spatial distribution of the member stars, we find an
extended halo structure of and Persei, about 6 - 8 times larger than
their core radii. We report the discovery of filamentary substructures
extending to about 200 pc away from the Double Cluster. The tangential
velocities of these distant substructures suggest that they are more likely to
be the remnants of primordial structures, instead of a tidally disrupted stream
from the cluster cores. Moreover, the internal kinematic analysis indicates
that halo stars seems to be experiencing a dynamic stretching in the RA
direction, while the impact of the core components is relatively negligible.
This work also suggests that the physical scale and internal motions of young
massive star clusters may be more complex than previously thought.Comment: 9 pagges, 9 figures, Accecpted to A&
Self-Diffusion in 2D Dusty Plasma Liquids: Numerical Simulation Results
We perform Brownian dynamics simulations for studying the self-diffusion in
two-dimensional (2D) dusty plasma liquids, in terms of both mean-square
displacement and velocity autocorrelation function (VAF). Super-diffusion of
charged dust particles has been observed to be most significant at infinitely
small damping rate for intermediate coupling strength, where the
long-time asymptotic behavior of VAF is found to be the product of and
. The former represents the prediction of early theories in
2D simple liquids and the latter the VAF of a free Brownian particle. This
leads to a smooth transition from super-diffusion to normal diffusion, and then
to sub-diffusion with an increase of the damping rate. These results well
explain the seemingly contradictory scattered in recent classical molecular
dynamics simulations and experiments of dusty plasmas.Comment: 10 pages 5 figures, accepted by PR
A Comprehensive Analysis of Fermi Gamma-Ray Burst Data. IV. Spectral Lag and its Relation to E p Evolution
The spectral evolution and spectral lag behavior of 92 bright pulses from 84 gamma-ray bursts observed by the Fermi Gamma-ray Burst Monitor (GBM) telescope are studied. These pulses can be classified into hard-to-soft pulses (H2S; 64/92), H2S-dominated-tracking pulses (21/92), and other tracking pulses (7/92). We focus on the relationship between spectral evolution and spectral lags of H2S and H2S-dominated-tracking pulses. The main trend of spectral evolution (lag behavior) is estimated with ( ), where E p is the peak photon energy in the radiation spectrum, t + t 0 is the observer time relative to the beginning of pulse −t 0, and is the spectral lag of photons with energy E with respect to the energy band 8–25 keV. For H2S and H2S-dominated-tracking pulses, a weak correlation between and k E is found, where W is the pulse width. We also study the spectral lag behavior with peak time of pulses for 30 well-shaped pulses and estimate the main trend of the spectral lag behavior with . It is found that is correlated with k E . We perform simulations under a phenomenological model of spectral evolution, and find that these correlations are reproduced. We then conclude that spectral lags are closely related to spectral evolution within the pulse. The most natural explanation of these observations is that the emission is from the electrons in the same fluid unit at an emission site moving away from the central engine, as expected in the models invoking magnetic dissipation in a moderately high-σ outflow
A comprehensive analysis of Fermi Gamma-Ray Burst Data: IV. Spectral lag and Its Relation to Ep Evolution
The spectral evolution and spectral lag behavior of 92 bright pulses from 84
gamma-ray bursts (GRBs) observed by the Fermi GBM telescope are studied. These
pulses can be classified into hard-to-soft pulses (H2S, 64/92),
H2S-dominated-tracking pulses (21/92), and other tracking pulses (7/92). We
focus on the relationship between spectral evolution and spectral lags of H2S
and H2S-dominated-tracking pulses. %in hard-to-soft pulses (H2S, 64/92) and
H2S-dominating-tracking (21/92) pulses. The main trend of spectral evolution
(lag behavior) is estimated with
(), where is the peak photon
energy in the radiation spectrum, is the observer time relative to the
beginning of pulse , and is the spectral lag of photons
with energy with respect to the energy band - keV. For H2S and
H2S-dominated-tracking pulses, a weak correlation between
and is found, where is the pulse width. We also study the spectral
lag behavior with peak time of pulses for 30 well-shaped pulses
and estimate the main trend of the spectral lag behavior with . It is found that is correlated with
. We perform simulations under a phenomenological model of spectral
evolution, and find that these correlations are reproduced. We then conclude
that spectral lags are closely related to spectral evolution within the pulse.
The most natural explanation of these observations is that the emission is from
the electrons in the same fluid unit at an emission site moving away from the
central engine, as expected in the models invoking magnetic dissipation in a
moderately-high- outflow.Comment: 58 pages, 11 figures, 3 tables. ApJ in pres
Wave spectra of 2D dusty plasma solids and liquids
Brownian dynamics simulations were carried out to study wave spectra of
two-dimensional dusty plasma liquids and solids for a wide range of
wavelengths. The existence of a longitudinal dust thermal mode was confirmed in
simulations, and a cutoff wavenumber in the transverse mode was measured.
Dispersion relations, resulting from simulations, were compared with those from
analytical theories, such as the random-phase approximation (RPA),
quasi-localized charged approximation (QLCA), and harmonic approximation (HA).
An overall good agreement between the QLCA and simulations was found for wide
ranges of states and wavelengths after taking into account the direct thermal
effect in the QLCA, while for the RPA and HA good agreement with simulations
were found in the high and low temperature limits, respectively.Comment: 26 pages, 9 figure
- …