10 research outputs found

    Disappearance of partonic collectivity in √sNN=3GeV Au+Au collisions at RHIC

    No full text
    We report on the measurements of directed flow v1 and elliptic flow v2 for hadrons (π±, K ±, K0 S , p, φ, Λ and ) from Au+Au collisions at √sN N = 3 GeV and v2 for (π±, K ±, p and p) at 27 and 54.4 GeV with the STAR experiment. While at the two higher energy midcentral collisions the numberof-constituent-quark (NCQ) scaling holds, at 3 GeV the v2 at midrapidity is negative for all hadrons and the NCQ scaling is absent. In addition, the v1 slopes at midrapidity for almost all observed hadrons are found to be positive, implying dominant repulsive baryonic interactions. The features of negative v2 and positive v1 slope at 3 GeV can be reproduced with a baryonic mean-field in transport model calculations. These results imply that the medium in such collisions is likely characterized by baryonic interactions

    Probing strangeness canonical ensemble with K−, φ(1020) and Ξ− production in Au+Au collisions at √sNN = 3 GeV

    No full text
    We report the first multi-differential measurements of strange hadrons of K −, φ and − yields as well as the ratios of φ/K − and φ/− in Au+Au collisions at √sNN = 3 GeV with the STAR experiment fixed target configuration at RHIC. The φ mesons and − hyperons are measured through hadronic decay channels, φ → K + K − and Ξ− → Λπ−. Collision centrality and rapidity dependence of the transverse momentum spectra for these strange hadrons are presented. The 4π yields and ratios are compared to thermal model and hadronic transport model predictions. At this collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the φ/K − and φ/− ratios while the result of canonical ensemble (CE) calculations reproduce φ/K −, with the correlation length rc ∼ 2.7 fm, and φ/−, rc ∼ 4.2 fm, for the 0-10% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at 3 GeV implies a rather different medium property at high baryon density

    Light nuclei collectivity from √sNN=3 GeV Au+Au collisions at RHIC

    No full text
    In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in √sNN = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, v1 and v2, of light nuclei (d, t, 3He, 4He) produced in √sNN = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured v1 slopes of light nuclei at mid-rapidity. For the measured v2 magnitude, a strong rapidity dependence is observed. Unlike v2 at higher collision energies, the v2 values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC

    Measurement of cold nuclear matter effects for inclusive J/ψ in p+Au collisions at √sNN = 200 GeV

    No full text
    Measurement by the STAR experiment at RHIC of the cold nuclear matter (CNM) effects experienced by inclusive J/ψ at mid-rapidity in 0-100% p+Au collisions at √sNN = 200 GeV is presented. Such effects are quantified utilizing the nuclear modification factor, RpAu, obtained by taking a ratio of J/ψ yield in p+Au collisions to that in p+p collisions scaled by the number of binary nucleon-nucleon collisions. The differential J/ψ yield in both p+p and p+Au collisions is measured through the dimuon decay channel, taking advantage of the trigger capability provided by the Muon Telescope Detector in the RHIC 2015 run. Consequently, the J/ψ RpAu is derived within the transverse momentum (pT) range of 0 to 10 GeV/c. A suppression of approximately 30% is observed for pT < 2 GeV/c, while J/ψ RpAu becomes compatible with unity for pT greater than 3 GeV/c, indicating the J/ψ yield is minimally affected by the CNM effects at high pT. Comparison to a similar measurement from 0-20% central Au+Au collisions reveals that the observed strong J/ψ suppression above 3 GeV/c is mostly due to the hot medium effects, providing strong evidence for the formation of the quark-gluon plasma in these collisions. Several model calculations show qualitative agreement with the measured J/ψ RpAu, while their agreement with the J/ψ yields in p+p and p+Au collisions is worse
    corecore