58,345 research outputs found
A Layman's guide to SUSY GUTs
The determination of the most straightforward evidence for the existence of
the Superworld requires a guide for non-experts (especially experimental
physicists) for them to make their own judgement on the value of such
predictions. For this purpose we review the most basic results of Super-Grand
unification in a simple and clear way. We focus the attention on two specific
models and their predictions. These two models represent an example of a direct
comparison between a traditional unified-theory and a string-inspired approach
to the solution of the many open problems of the Standard Model. We emphasize
that viable models must satisfy {\em all} available experimental constraints
and be as simple as theoretically possible. The two well defined supergravity
models, and , can be described in terms of only a few
parameters (five and three respectively) instead of the more than twenty needed
in the MSSM model, \ie, the Minimal Supersymmetric extension of the Standard
Model. A case of special interest is the strict no-scale
supergravity where all predictions depend on only one parameter (plus the
top-quark mass). A general consequence of these analyses is that supersymmetric
particles can be at the verge of discovery, lurking around the corner at
present and near future facilities. This review should help anyone distinguish
between well motivated predictions and predictions based on arbitrary choices
of parameters in undefined models.Comment: 25 pages, Latex, 11 figures (not included), CERN-TH.7077/93,
CTP-TAMU-65/93. A complete ps file (1.31MB) with embedded figures is
available by request from [email protected]
New Precision Electroweak Tests of SU(5) x U(1) Supergravity
We explore the one-loop electroweak radiative corrections in supergravity via explicit calculation of vacuum-polarization and
vertex-correction contributions to the and
parameters. Experimentally, these parameters are obtained from a global fit to
the set of observables , and . We
include -dependent effects, which induce a large systematic negative shift
on for light chargino masses (m_{\chi^\pm_1}\lsim70\GeV). The
(non-oblique) supersymmetric vertex corrections to \Zbb, which define the
parameter, show a significant positive shift for light chargino
masses, which for can be nearly compensated by a negative
shift from the charged Higgs contribution. We conclude that at the 90\%CL, for
m_t\lsim160\GeV the present experimental values of and
do not constrain in any way supergravity in
both no-scale and dilaton scenarios. On the other hand, for m_t\gsim160\GeV
the constraints on the parameter space become increasingly stricter. We
demonstrate this trend with a study of the m_t=170\GeV case, where only a
small region of parameter space, with \tan\beta\gsim4, remains allowed and
corresponds to light chargino masses (m_{\chi^\pm_1}\lsim70\GeV). Thus
supergravity combined with high-precision LEP data would
suggest the presence of light charginos if the top quark is not detected at the
Tevatron.Comment: LaTeX, 11 Pages+4 Figures(not included), the figures available upon
request as an uuencoded file(0.4MB) or 4 PS files from [email protected],
CERN-TH.7078/93, CTP-TAMU-68/93, ACT-24/9
Near-Field Radio Holography of Large Reflector Antennas
We summarise the mathematical foundation of the holographic method of
measuring the reflector profile of an antenna or radio telescope. In
particular, we treat the case, where the signal source is located at a finite
distance from the antenna under test, necessitating the inclusion of the
so-called Fresnel field terms in the radiation integrals. We assume a ``full
phase'' system with reference receiver to provide the reference phase. We
describe in some detail the hardware and software implementation of the system
used for the holographic measurement of the 12m ALMA prototype submillimeter
antennas. We include a description of the practicalities of a measurement and
surface setting. The results for both the VertexRSI and AEC
(Alcatel-EIE-Consortium) prototype ALMA antennas are presented.Comment: 14 pages, 14 figures, to appear in IEEE Antennas and Propagation
Magazine, Vol. 49, No. 5, October 2007. Version 2 includes nice mug-shots of
the author
How effective is lifeline banking in assisting the 'unbanked'?
Many consumers who lack checking accounts are paying relatively high costs to access the nation's payments system. Legislation aimed at opening the system to these unbanked individuals has centered on requiring commercial banks to offer low-cost "lifeline" accounts. But will cost savings alone motivate these consumers to access the payments system through banks?Checking accounts ; Banks and banking - Service charges ; Poverty
SUSY signals at HERA in the no-scale flipped SU(5) supergravity model
Sparticle production and detection at HERA are studied within the recently
proposed no-scale flipped supergravity model. Among the various
reaction channels that could lead to sparticle production at HERA, only the
following are within its limit of sensitivity in this model: , where are the
two lightest neutralinos and is the lightest chargino. We study the
elastic and deep-inelastic contributions to the cross sections using the
Weizs\"acker-Williams approximation. We find that the most promising
supersymmetric production channel is right-handed selectron ()
plus first neutralino (), with one hard electron and missing energy
signature. The channel leads to comparable rates but also
allows jet final states. A right-handedly polarized electron beam at HERA would
shut off the latter channel and allow preferentially the former one. With an
integrated luminosity of {\cal L}=100\ipb, HERA can extend the present LEPI
lower bounds on by
\approx25\GeV, while {\cal L}=1000\ipb will make HERA competitive with
LEPII. We also show that the Leading Proton Spectrometer (LPS) at HERA is an
excellent supersymmetry detector which can provide indirect information about
the sparticle masses by measuring the leading proton longitudinal momentum
distribution.Comment: 11 pages, 8 figures (available upon request as uuencoded file or
separate ps files), tex (harvmac) CTP-TAMU-15/93, CERN/LAA/93-1
Ultrafast Insulator-Metal Phase Transition in VO2 Studied by Multiterahertz Spectroscopy
The ultrafast photoinduced insulator-metal transition in VO2 is studied at
different temperatures and excitation fluences using multi-THz probe pulses.
The spectrally resolved mid-infrared response allows us to trace separately the
dynamics of lattice and electronic degrees of freedom with a time resolution of
40 fs. The critical fluence of the optical pump pulse which drives the system
into a long-lived metallic state is found to increase with decreasing
temperature. Under all measurement conditions we observe a modulation of the
eigenfrequencies of the optical phonon modes induced by their anharmonic
coupling to the coherent wave packet motion of V-V dimers at 6.1 THz.
Furthermore, we find a weak quadratic coupling of the electronic response to
the coherent dimer oscillation resulting in a modulation of the electronic
conductivity at twice the frequency of the wave packet motion. The findings are
discussed in the framework of a qualitative model based on an approximation of
local photoexcitation of the vanadium dimers from the insulating state.Comment: 10 pages, 8 figures submitted to Physical Review
- âŚ