337 research outputs found

    Specific detection of OCT3/4 isoform A/B/B1 expression in solid (germ cell) tumours and cell lines: confirmation of OCT3/4 specificity for germ cell tumours

    Get PDF
    BACKGROUND: OCT3/4 (POU5F1) is an established diagnostic immunohistochemical marker for specific histological variants of human malignant germ cell tumours (GCTs), including the seminomatous types and the stem cell component of non-seminomas, known as embryonal carcinoma. OCT3/4 is crucial for the regulation of pluripotency and the self-renewal of normal embryonic stem-and germ cells. Detection of expression of this transcription factor is complicated by the existence of multiple pseudogenes and isoforms. Various claims have been made about OCT3/4 expression in non-GCTs, possibly related to using nonspecific detection methods. False-positive findings undermine the applicability of OCT3/4 as a specific diagnostic tool in a clinical setting. In addition, false-positive findings could result in misinterpretation of pluripotency regulation in solid somatic cancers and their stem cells. Of the three identified isoforms - OCT4A, OCT4B and OCT4B1 - only OCT4A proved to regulate pluripotency. Up until now, no convincing nuclear OCT4A protein expression has been shown in somatic cancers or tissues. METHODS: This study investigates expression of the various OCT3/4 isoforms in GCTs (both differentiated and undifferentiated) and somatic (non-germ cell) cancers, including representative cell lines and xenografts. RESULTS: Using specific methods, OCT4A and OCT4B1 are shown to be preferentially expressed in undifferentiated GCTs. The OCT4B variant shows no difference in expression between GCTs (either differentiated or undifferentiated) and somatic cancers. In spite of the presence of OCT4A mRNA in somatic cancer-derived cell lines, no OCT3/4 protein is detected. Significant positive correlations between all isoforms of OCT3/4 were identified in both tumours with and without a known stem cell component, possibly indicating synergistic roles of these isoforms. CONCLUSION: This study confirms that OCT4A protein only appears in seminomatous GCTs, embryonal carcinoma and representative cell lines. Furthermore, it emphasises that in order to correctly assess the presence of functional OCT3/4, both isoform specific mRNA and protein detection are required. British Journal of Cancer (2011) 105, 854-863. doi: 10.1038/bjc.2011.270 www.bjcancer.com Published online 16 August 2011 (C) 2011 Cancer Research U

    Human testicular (non)seminomatous germ cell tumours: the clinical implications of recent pathobiological insights

    No full text
    Human germ cell tumours (GCTs) comprise several types of neoplasias with different pathogeneses and clinical behaviours. A classification into five subtypes has been proposed. Here, the so-called type II testicular GCTs (TGCTs), ie the seminomas and non-seminomas, will be reviewed with emphasis on pathogenesis and clinical implications. Various risk factors have been identified that define subpopulations of men who are amenable to early diagnosis. TGCTs are omnipotent, able to generate all differentiation lineages, both embryonic and extra-embryonic, as well as the germ cell lineage itself. The precursor lesion, composed of primordial germ cells/gonocytes, is referred to as carcinoma in situ of the testis (CIS) and gonadoblastoma of the dysgenetic gonad. These pre-malignant cells retain embryonic characteristics, which probably explains the unique responsiveness of the derived tumours to DNA-damaging agents. Development of CIS and gonadoblastoma is crucially dependent on the micro-environment created by Sertoli cells in the testis, and granulosa cells in the dysgenetic gonad. OCT3/4 has high sensitivity and specificity for CIS/gonadoblastoma, seminoma, and embryonal carcinoma, and is useful for the detection of CIS cells in semen, thus a promising tool for non-invasive screening. Overdiagnosis of CIS due to germ cell maturation delay can be avoided using immunohistochemical detection of stem cell factor (SCF). Immunohistochemistry is helpful in making the distinction between seminoma and embryonal carcinoma, especially SOX17 and SOX2. The different non-seminomatous histological elements can be recognized using various markers, such as AFP and hCG, while others need confirmation. The value of micro-satellite instability as well as BPAF mutations in predicting treatment resistance needs validation in prospective trials. The availability of representative cell lines, both for seminoma and for embryonal carcinoma, allows mechanistic studies into the initiation and progression of this disease. Copyright (c) 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd

    Embryogenesis and Metastatic Testicular Germ Cell Tumors of Adolescents

    No full text
    corecore