39 research outputs found
Pharmacokinetic-Pharmacodynamic Modelling of the Analgesic and Antihyperalgesic Effects of Morphine after Intravenous Infusion in Human Volunteers
Using a modelling approach, this study aimed to (i) examine whether the pharmacodynamics of the analgesic and antihyperalgesic effects of morphine differ; (ii) investigate the influence of demographic, pain sensitivity and genetic (OPRM1) variables on between-subject variability of morphine pharmacokinetics and pharmacodynamics in human experimental pain models. The study was a randomized, double-blind, 5-arm, cross-over, placebo-controlled study. The psychophysical cutaneous pain tests, electrical pain tolerance (EPTo) and secondary hyperalgesia areas (2HA) were studied in 28 healthy individuals (15 males). The subjects were chosen based on a previous trial where 100 subjects rated (VAS) their pain during a heat injury (47°C, 7 min., 12.5 cm²). The 33% lowest- and highest pain-sensitive subjects were offered participation in the present study. A two-compartment linear model with allometric scaling for weight provided the best description of the plasma concentration-time profile of morphine. Changes in the EPTo and 2HA responses with time during the placebo treatment were best described by a linear model and a quadratic model, respectively. The model discrimination process showed clear evidence for adding between-occasion variability (BOV) on baseline and the placebo slope for EPTo and 2HA, respectively. The sensitivity covariate was significant on baseline EPTo values and genetics as a covariate on the placebo slope for 2HA. The analgesic and antihyperalgesic effects of morphine were pharmacologically distinct as the models had different effect site equilibration half-lives and different covariate effects. Morphine had negligible effect on 2HA, but significant effect on EPTo.Pernille Ravn, David J.R. Foster, Mads Kreilgaard, Lona Christrup, Mads U. Werner, Erik L. Secher, Ulrik Skram and Richard Upto