7,536 research outputs found
Polarization at HERA-
The production of mesons in fixed target collisions is
considered. It is shown that Non-Relativistic QCD predicts states to
be produced with sizeable transverse polarization. The possibility of a
measurement of the polarization at the HERA- experiment is
discussed.Comment: 9 pages, LaTeX, with 3 eps figs included with epsfig.st
Response maxima in modulated turbulence
Isotropic and homogeneous turbulence driven by an energy input modulated in
time is studied within a variable range mean-field theory. The response of the
system, observed in the second order moment of the large-scale velocity
difference D(L,t)=>~Re(t)^2$, is calculated for varying
modulation frequencies w and weak modulation amplitudes. For low frequencies
the system follows the modulation of the driving with almost constant
amplitude, whereas for higher driving frequencies the amplitude of the response
decreases on average 1/w. In addition, at certain frequencies the amplitude of
the response either almost vanishes or is strongly enhanced. These frequencies
are connected with the frequency scale of the energy cascade and multiples
thereof.Comment: 11 pages, 6 figure
Customs compliance and the power of imagination
This paper studies the role of beliefs about own performance or appearance for compliance at the customs. In an experiment in which underreporting has a higher expected payoff than truthful reporting we find: a large share, about 15-20 percent of the subjects, is more compliant if they have reason to imagine that their performance influences their subjective audit probability. In contrast, we do not find evidence for individuals who believe that by their personal performance they can reduce the subjective probability for an audit. Our results suggest that the power of imagination, i.e. the role of second-order beliefs in the process of customs declarations is important and may potentially be used to improve customs and tax compliance. --Customs,tax compliance,audit probability,second-order beliefs
Heat transport and flow structure in rotating Rayleigh-B\'enard convection
Here we summarize the results from our direct numerical simulations (DNS) and
experimental measurements on rotating Rayleigh-B\'enard (RB) convection. Our
experiments and simulations are performed in cylindrical samples with an aspect
ratio \Gamma varying from 1/2 to 2. Here \Gamma=D/L, where D and L are the
diameter and height of the sample, respectively. When the rotation rate is
increased, while a fixed temperature difference between the hot bottom and cold
top plate is maintained, a sharp increase in the heat transfer is observed
before the heat transfer drops drastically at stronger rotation rates. Here we
focus on the question of how the heat transfer enhancement with respect to the
non-rotating case depends on the Rayleigh number Ra, the Prandtl number Pr, and
the rotation rate, indicated by the Rossby number Ro. Special attention will be
given to the influence of the aspect ratio on the rotation rate that is
required to get heat transport enhancement. In addition, we will discuss the
relation between the heat transfer and the large scale flow structures that are
formed in the different regimes of rotating RB convection and how the different
regimes can be identified in experiments and simulations.Comment: 12 pages, 10 figure
Morphology Development in Model Polyethylene via Two-Dimensional Correlation Analysis
Two-dimensional (2D) correlation analysis is applied to synchrotron X-ray scattering data to characterize
morphological regimes during nonisothermal crystallization of a model ethylene copolymer (hydrogenated polybutadiene,
HPBD). The 2D correlation patterns highlight relationships
among multiple characteristics of structure evolution, particularly the extent to which separate features change simultaneously versus sequentially. By visualizing these relationships during cooling, evidence is obtained for two separate physical processes occurring in what is known as âirreversible crystallizationâ in random ethylene copolymers. Initial growth of primarily lamellae into unconstrained melt (âprimary-irreversible crystallizationâ) is distinguished from subsequent secondary lamellae formation in the constrained, noncrystalline regions
between the primary lamellae (âsecondary-irreversible crystallizationâ). At successively lower temperatures (âreversible crystallizationâ), growth of the crystalline reflections is found to occur simultaneously with the change in shape of the amorphous halo, which is inconsistent with the formation of an additional phase. Rather, the synchronous character supports the view that growth of frustrated crystals distorts the adjacent noncrystalline material. Furthermore, heterocorrelation analysis of small-angle and wideangle X-ray scattering data from the reversible crystallization regime reveals that the size of new crystals is consistent with fringedmicellar structures (~9 nm). Thus, 2D correlation analysis provides new insights into morphology development in polymeric systems
Radial boundary layer structure and Nusselt number in Rayleigh-Benard convection
Results from direct numerical simulations for three dimensional
Rayleigh-Benard convection in a cylindrical cell of aspect ratio 1/2 and Pr=0.7
are presented. They span five decades of Ra from to . Good numerical resolution with grid spacing Kolmogorov
scale turns out to be crucial to accurately calculate the Nusselt number, which
is in good agreement with the experimental data by Niemela et al., Nature, 404,
837 (2000). In underresolved simulations the hot (cold) plumes travel further
from the bottom (top) plate than in the fully resolved case, because the
thermal dissipation close to the sidewall (where the grid cells are largest) is
insufficient. We compared the fully resolved thermal boundary layer profile
with the Prandtl-Blasius profile. We find that the boundary layer profile is
closer to the Prandtl Blasius profile at the cylinder axis than close to the
sidewall, due to rising plumes in that region.Comment: 10 pages, 6 figure
Customs Compliance and the Power of Imagination
This paper studies the role of beliefs about own performance or appearance for compliance at the customs. In an experiment in which underreporting has a higher expected payoff than truthful reporting we find: a large share, about 15-20 percent of the subjects, is more compliant if they have reason to imagine that their performance influences their subjective audit probability. In contrast, we do not find evidence for individuals who believe that by their personal performance they can reduce the subjective probability for an audit. Our results suggest that the power of imagination, i.e. the role of second-order beliefs in the process of customs declarations is important and may potentially be used to improve customs and tax compliance.customs, tax compliance, audit probability, second-order beliefs
Sidewall effects in Rayleigh-B\'enard convection
We investigate the influence of the temperature boundary conditions at the
sidewall on the heat transport in Rayleigh-B\'enard (RB) convection using
direct numerical simulations. For relatively low Rayleigh numbers Ra the heat
transport is higher when the sidewall is isothermal, kept at a temperature
(where is the temperature difference between the
horizontal plates and the temperature of the cold plate), than when the
sidewall is adiabatic. The reason is that in the former case part of the heat
current avoids the thermal resistance of the fluid layer by escaping through
the sidewall that acts as a short-circuit. For higher Ra the bulk becomes more
isothermal and this reduces the heat current through the sidewall. Therefore
the heat flux in a cell with an isothermal sidewall converges to the value
obtained with an adiabatic sidewall for high enough Ra ().
However, when the sidewall temperature deviates from the heat
transport at the bottom and top plates is different from the value obtained
using an adiabatic sidewall. In this case the difference does not decrease with
increasing Ra thus indicating that the ambient temperature of the experimental
apparatus can influence the heat transfer. A similar behavior is observed when
only a very small sidewall region close to the horizontal plates is kept
isothermal, while the rest of the sidewall is adiabatic. The reason is that in
the region closest to the horizontal plates the temperature difference between
the fluid and the sidewall is highest. This suggests that one should be careful
with the placement of thermal shields outside the fluid sample to minimize
spurious heat currents.Comment: 27 pages, 16 figure
- âŠ