29 research outputs found

    Study of corrosion of 1100 aluminum

    Get PDF
    Corrosion of 1100 aluminum in oxygen-saturated water at 70 degrees C under experimental conditions was studied, emphasizing effects of exposure interruption, the number of specimens, and the refreshment rate. A logarithmic equation was derived to express the corrosion rate

    Instrumentation for potentiostatic corrosion studies with distilled water

    Get PDF
    Corrosion is studied potentiostatically in the corroding environment of distilled water with an instrument that measures the potential of the corroding specimen immediately after interruption of the polarizing current. No current is flowing. The process permits compensation for IR drops when potentiostatic control is used in high resistance systems

    Study of crevice-galvanic corrosion of aluminum

    Get PDF
    Corrosion effects of aluminum-copper and aluminum-nickel couples in oxygenated distilled water, and aluminum alloys in oxygenated copper sulfate solution were studied. One of each of the couples had a water tight seal, and showed no substantial corrosion, and of the unsealed couples, only the aluminum-copper developed corrosion

    Applicability of five models to simulate water infiltration into soil with added biochar

    No full text
    As a soil amendment, biochar can reduce soil bulk density, increase soil porosity, and alter soil aggregates and thus affect the infiltration. Researchers have proposed and revised several theoretical models to describe the process of soil infiltration. Although these models have been successfully used to evaluate the soil infiltration in different scenarios in agricultural fields, little effort has been devoted to assess their performances in arid and semi-arid soils after the addition of biochar. A laboratory experiment was performed to study the infiltration characteristics of two typical Loess Plateau soils at three particle sizes (2-1, 1-0.25, and < 0.25 mm) and five biochar application amounts (0, 10, 50, 100, and 150 g/kg). The performance of five models (i.e., the Philip model, Kostiakov model, Mezencev model, USDA-NRCS model, and Horton model) in simulating the infiltration process was then evaluated based on the adjusted coefficient of determination and a reduced Chi-Square test. Results indicated that the Horton model best simulated the water-infiltration process in an aeolian sandy soil with added biochar. However, the Mezencev model best simulated the infiltration process in a loamy clay soil (Eum-Orthic Anthrosol). The three-parameter model, i.e., Mezencev and Horton models can better describe the relationship between cumulative infiltration and infiltration time. In conclusion, biochar reduced the soil infiltration capacity of the aeolian sandy soil and increased that of the Eum-Orthic Anthrosol

    Effects of biochar addition on evaporation in the five typical Loess Plateau soils

    No full text
    Soil evaporation is the main route of soil moisture loss and often exceeds precipitation in the arid and semi-arid regions of the Loess Plateau. This study was conducted to determine whether biochar addition could reduce soil evaporation in drylands. We measured the evaporative loss in five typical topsoils (0-20 cm) from the Loess Plateau, Shaanxi, China, that differed in texture (Eum-Orthic Anthrosol, Isohumisol, Loess, Sandy loess, and Aeolian sand) with five different biochar addition amounts (0, 10, 50, 100, and 150 g-biochar/kg soil) and three biochar particle sizes (2-1 nun, 1-0.25 mm, and < 0.25 mm). The results showed that biochar addition generally increased the soil average water content (by 35.6% in biochar treatments and 33.5% in control treatments) and effectively reduced soil cumulative evaporation (by 322.64 gin biochar treatments and 326.68 gin control treatments). In addition, the inhibition of evaporation was enhanced with increases in biochar particle size and addition amount. Biochar addition had contrasting effects in the two evaporation stages: Biochar decreased evaporation through capillary flow during the first stage of evaporation but increased evaporation during the second, diffusion-limited vapour transport stage, particularly in the Aeolian sandy soil. When expressed on a mass basis, the effect of biochar addition amount on the cumulative evaporation (CE) was dependent on biochar particle size. In the larger sized (2-1 mm and 1-0.25 mm) biochar treatments, the final CE decreased as the addition amount increased, but for < 0.25 mm particles, increasing the biochar addition amount increased the final CE due to the creation of micropores. However, biochar addition decreased the ratio of evaporative loss in all soils proportional to the biochar addition amount. Soil texture and biochar particle size were the main factors affecting soil evaporation. Biochar application has the potential to improve soil water availability in semi-arid lands, but the results will depend on the biochar particle size and addition amount
    corecore