6 research outputs found
Service network design for an intermodal container network with flexible due dates/times and the possibility of using subcontracted transport
An intermodal container transportation network is being developed between Rotterdam and several inland terminals in North West Europe: the EUROPEAN GATEWAY SERVICES (EGS) network. This network is developed and operated by the seaports of EUROPE CONTAINER TERMINALS (ECT). To use this network cost-efficiently, a centralized planning of the container transportation is required, to be operated by the seaport. In this paper, a new mathematical model is proposed for the service network design. The model uses a combination of a path-based formulation and a minimum flow network formulation. It introduces two new features to the intermodal network-planning problem. Firstly, overdue deliveries are penalized instead of prohibited. Secondly, the model combines self-operated and subcontracted services. The service network design considers the network-planning problem at a tactical level: the optimal service schedule between the given network terminals is determined. The model considers self-operated or subcontracted barge and rail services as well as transport by truck. The model is used for the service network design of the EGS network. For this case, the benefit of using container transportation with multiple legs and intermediate transfers is studied. Also, a preliminary test of the influence of the new aspects of the model is done. The preliminary results indicate that the proposed model is suitable for the service network design in modern intermodal container transport networks. Also, the results suggest that a combined business model for the network transport and terminals is worth investigating further, as the transit costs can be reduced with lower transfer costs
Impact and relevance of transit disturbances on planning in intermodal container networks
__Abstract__
An intermodal container transportation network is being developed between Rotterdam and several inland terminals in North West Europe: the European Gateway Services network. This network is developed and operated by the sea terminals of Europe Container Terminals (ECT). To use this network cost-efficiently, centralised planning by the sea terminal of the container transportation is required. For adequate planning it is important to adapt to occurring disturbances. In this paper, a new mathematical model is proposed: the Linear Container Allocation model with Time-restrictions (LCAT). This model is used for determining the influence of three main types of transit disturbances on the network performance: early departure, late departure, and cancellation of inland services. The influence of a disturbance is measured in two ways. The impact measures the additional cost incurred by an updated planning in case of a disturbance. The relevance measures the cost difference between a fully updated and a locally updated plan. With the results of the analysis, key service properties of disturbed services that result in a high impact or high relevance can be determined. Based on this, the network operator can select focus areas to prevent disturbances with high impact and to improve the planning updates in case of disturbances with high relevance. In a case study of the EGS network, the impact and relevance of transit disturbances on all network services are assessed