2 research outputs found
Recommended from our members
Hyperresolution information and hyperresolution ignorance in modelling the hydrology of the land surface
There is a strong drive towards hyperresolution earth system models in order to resolve finer scales of motion in the atmosphere. The problem of obtaining more realistic representation of terrestrial fluxes of heat and water, however, is not just a problem of moving to hyperresolution grid scales. It is much more a question of a lack of knowledge about the parameterisation of processes at whatever grid scale is being used for a wider modelling problem. Hyperresolution grid scales cannot alone solve the problem of this hyperresolution ignorance. This paper discusses these issues in more detail with specific reference to land surface parameterisations and flood inundation models. The importance of making local hyperresolution model predictions available for evaluation by local stakeholders is stressed. It is expected that this will be a major driving force for improving model performance in the future.
Keith BEVEN, Hannah CLOKE, Florian PAPPENBERGER, Rob LAMB, Neil HUNTE
A comparison of techniques used in rainfall-runoff models : model efficiency
A suite of three underlying rainfall-runoff modeling techniques is applied to two data sets and the results used to compare model efficiencies for selected events. Linear regression, unit hydrograph, and quasi-physically based models make up the modeling suite. The two data sets come from a 7.2 KM subwatershed (MCW) near Klingerstown, Pennsylvania and a 0.096 KM2 subwatershed (R-5) near Chickasha, Oklahoma.-Individual model efficiencies are determined on the basis of a sums of squares criterion. These efficiencies are surprisingly poor. Results indicate that the most informative independent linear regression variables for MCW and R-5 are volume of rainfall and average rainfall intensity respectively. There is a general improvement in correlation coefficients and regression model efficiencies for both MCW and R-5 with increases in the number of selected events. The unit hydrograph and quasi-physically based models exhibited predictive prowess only for the R-5 events. The unit hydrograph technique is found to be strongly dependent upon an accurate estimate of spatially-variable excess rainfall. The efficiency of the physically-based, deterministic, distributed model was found to deteriorate drastically with increases in basin size due to the lumping of spatially-variable soil hydraulic properties. Based on this work a definitively superior rainfall-runoff modeling technique is not suggested. Limitations of each of the three models and the efficiency criterion used for their evaluation are discussed. This work provides the foundation for a subsequent investigation to be carried out by the author, to determine if space-time tradeoffs exist across data sets of various rainfall-runoff modeling techniques. Future research will focus on the concept of data-worth and the question of model choice.Science, Faculty ofEarth, Ocean and Atmospheric Sciences, Department ofGraduat