47 research outputs found

    Methylation-dependent silencing of CST6 in primary human breast tumors and metastatic lesions

    Get PDF
    CST6 is a breast tumor suppressor gene that is expressed in normal breast epithelium, but is epigenetically silenced as a consequence of promoter hypermethylation in metastatic breast cancer cell lines. In the current study, we investigated the expression and methylation status of CST6 in primary breast tumors and lymph node metastases. 25/45 (56%) primary tumors and 17/20 (85%) lymph node metastases expressed significantly lower levels of cystatin M compared to normal breast tissue. Bisulfite sequencing demonstrated CST6 promoter hypermethylation in 11/23 (48%) neoplastic lesions analyzed, including 3/11 (27%) primary tumors and 8/12 (67%) lymph node metastases. In most cases (12/23, 52%), the expression of cystatin M directly reflected CST6 promoter methylation status. In remaining lesions (8/23, 35%) loss of cystatin M was not associated with CST6 promoter hypermethylation, indicating that other mechanisms can account for loss of CST6 expression. These results show that methylation-dependent silencing of CST6 occurs in a subset of primary breast cancers, but more frequently in metastatic lesions, possibly reflecting progression-related genomic events. To examine this possibility, primary breast tumors and matched lymph node metastases were analyzed. In 2/3 (67%) patients, primary tumors were positive for cystatin M and negative for CST6 promoter methylation, and matched metastatic lesions lacked cystatin M expression and CST6 was hypermethylated. This observation suggests that progression-related epigenetic alterations in CST6 gene expression can accompany metastatic spread from a primary tumor site. Overall, the results of the current investigation suggest that methylation-dependent epigenetic silencing of CST6 represents an important mechanism for loss of CST6 during breast tumorigenesis and/or progression to metastasis

    Dysregulation of microRNA expression drives aberrant DNA hypermethylation in basal-like breast cancer

    Get PDF
    Basal-like breast cancers frequently express aberrant DNA hypermethylation associated with concurrent silencing of specific genes secondary to DNMT3b overexpression and DNMT hyperactivity. DNMT3b is known to be post-transcriptionally regulated by microRNAs. The objective of the current study was to determine the role of microRNA dysregulation in the molecular mechanism governing DNMT3b overexpression in primary breast cancers that express aberrant DNA hypermethylation. The expression of microRNAs (miRs) that regulate (miR-29a, miR-29b, miR-29c, miR-148a and miR-148b) or are predicted to regulate DNMT3b (miR-26a, miR-26b, miR-203 and miR-222) were evaluated among 70 primary breast cancers (36 luminal A-like, 13 luminal B-like, 5 HER2-enriched, 16 basal-like) and 18 normal mammoplasty tissues. Significantly reduced expression of miR-29c distinguished basal-like breast cancers from other breast cancer molecular subtypes. The expression of aberrant DNA hypermethylation was determined in a subset of 33 breast cancers (6 luminal A-like, 6 luminal B-like, 5 HER2-enriched and 16 basal-like) through examination of methylation-sensitive biomarker gene expression (CEACAM6, CDH1, CST6, ESR1, GNA11, MUC1, MYB, TFF3 and SCNN1A), 11/33 (33%) cancers exhibited aberrant DNA hypermethylation including 9/16 (56%) basal-like cancers, but only 2/17 (12%) non-basal-like cancers (luminal A-like, n=1; HER2-enriched, n=1). Breast cancers with aberrant DNA hypermethylation express diminished levels of miR-29a, miR-29b, miR-26a, miR-26b, miR-148a and miR-148b compared to cancers lacking aberrant DNA hypermethylation. A total of 7/9 (78%) basal-like breast cancers with aberrant DNA hypermethylation exhibit diminished levels of ≥6 regulatory miRs. The results show that i) reduced expression of miR-29c is characteristic of basal-like breast cancers, ii) miR and methylation-sensitive gene expression patterns identify two subsets of basal-like breast cancers, and iii) the subset of basal-like breast cancers with reduced expression of multiple regulatory miRs express aberrant DNA hypermethylation. Together, these findings strongly suggest that the molecular mechanism governing the DNMT3b-mediated aberrant DNA hypermethylation in primary breast cancer involves the loss of post-transcriptional regulation of DNMT3b by regulatory miRs

    Lapatinib in Combination With Radiation Diminishes Tumor Regrowth in HER2+ and Basal-Like/EGFR+ Breast Tumor Xenografts

    Get PDF
    To determine whether lapatinib, a dual epidermal growth factor receptor (EGFR)/HER2 kinase inhibitor, can radiosensitize EGFR+ or HER2+ breast cancer xenografts

    A compact VEGF signature associated with distant metastases and poor outcomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor metastases pose the greatest threat to a patient's survival, and thus, understanding the biology of disseminated cancer cells is critical for developing effective therapies.</p> <p>Methods</p> <p>Microarrays and immunohistochemistry were used to analyze primary breast tumors, regional (lymph node) metastases, and distant metastases in order to identify biological features associated with distant metastases.</p> <p>Results</p> <p>When compared with each other, primary tumors and regional metastases showed statistically indistinguishable gene expression patterns. Supervised analyses comparing patients with distant metastases versus primary tumors or regional metastases showed that the distant metastases were distinct and distinguished by the lack of expression of fibroblast/mesenchymal genes, and by the high expression of a 13-gene profile (that is, the 'vascular endothelial growth factor (VEGF) profile') that included <it>VEGF, ANGPTL4, ADM </it>and the monocarboxylic acid transporter <it>SLC16A3</it>. At least 8 out of 13 of these genes contained HIF1α binding sites, many are known to be HIF1α-regulated, and expression of the VEGF profile correlated with HIF1α IHC positivity. The VEGF profile also showed prognostic significance on tests of sets of patients with breast and lung cancer and glioblastomas, and was an independent predictor of outcomes in primary breast cancers when tested in models that contained other prognostic gene expression profiles and clinical variables.</p> <p>Conclusion</p> <p>These data identify a compact <it>in vivo </it>hypoxia signature that tends to be present in distant metastasis samples, and which portends a poor outcome in multiple tumor types.</p> <p>This signature suggests that the response to hypoxia includes the ability to promote new blood and lymphatic vessel formation, and that the dual targeting of multiple cell types and pathways will be needed to prevent metastatic spread.</p

    FAK overexpression and p53 mutations are highly correlated in human breast cancer

    Get PDF
    Focal Adhesion Kinase (FAK) is overexpressed in a number of tumors, including breast cancer. Another marker of breast cancer tumorigenesis is the tumor suppressor gene p53 that is frequently mutated in breast cancer. In the present study, our aim was to find a correlation between FAK overexpression, p53 expression and mutation status in a population-based series of invasive breast cancer tumors from the Carolina Breast Cancer Study. Immunohistochemical analyses of 622 breast cancer tumors revealed that expression of FAK and p53 were highly correlated (P = 0.0002) and FAK positive tumors were 1.8 times more likely to be p53 positive compared to FAK negative tumors [odds ratio (OR) = 1.8; 95% Confidence Interval (CI) 1.2 – 2.8, adjusted for age, race and stage at diagnosis]. Tumors positive for p53 expression showed higher intensity of FAK staining (P<0.0001) and higher percent of FAK positive staining (P<0.0005). From the same study, we evaluated 596 breast tumors for mutations in the p53 gene, using SSCP (single strand conformational polymorphism) and sequencing. Statistical analyses were performed to determine the correlation between p53 mutation status and FAK expression in these tumors. We found that FAK expression and p53 mutation were positively correlated (P<0.0001) and FAK positive tumors were 2.5 times more likely to be p53 mutation positive compared to FAK negative tumors [adjusted OR = 2.5, 95% CI 1.6–3.9]. This is the first analysis demonstrating a high correlation between FAK expression and p53 mutations in a population-based series of breast tumors

    Molecular Characterization of Human Breast Tumor Vascular Cells

    Get PDF
    A detailed understanding of the assortment of genes that are expressed in breast tumor vessels is needed to facilitate the development of novel, molecularly targeted anti-angiogenic agents for breast cancer therapies. Rapid immunohistochemistry using factor VIII-related antibodies was performed on sections of frozen human luminal-A breast tumors (n = 5) and normal breast (n = 5), followed by laser capture microdissection of vascular cells. RNA was extracted and amplified, and fluorescently labeled cDNA was synthesized and hybridized to 44,000-element long-oligonucleotide DNA microarrays. Statistical analysis of microarray was used to compare differences in gene expression between tumor and normal vascular cells, and Expression Analysis Systematic Explorer was used to determine enrichment of gene ontology categories. Protein expression of select genes was confirmed using immunohistochemistry. Of the 1176 genes that were differentially expressed between tumor and normal vascular cells, 55 had a greater than fourfold increase in expression level. The extracellular matrix gene ontology category was increased while the ribosome gene ontology category was decreased. Fibroblast activation protein, secreted frizzled-related protein 2, Janus kinase 3, and neutral sphingomyelinase 2 proteins localized to breast tumor endothelium as assessed by immunohistochemistry, showing significantly greater staining compared with normal tissue. These tumor endothelial marker proteins also exhibited increased expression in breast tumor vessels compared with that in normal tissues. Therefore, these genetic markers may serve as potential targets for the development of angiogenesis inhibitors

    The prognostic contribution of clinical breast cancer subtype, age, and race among patients with breast cancer brain metastases

    Get PDF
    Brain metastases (BM) arising from Triple-negative breast cancer (TNBC) portend poor prognosis. TNBC is more common in premenopausal and African-American (AA) patients; both also confer poor prognosis. In a single institution cohort study, we sought to determine if inferior outcome of TN BCBM is more reflective of a higher-risk population or subtype itself

    Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer

    Get PDF
    Breast cancer metastasis remains a clinical challenge, even within a single patient across multiple sites of the disease. Genome-wide comparisons of both the DNA and gene expression of primary tumors and metastases in multiple patients could help elucidate the underlying mechanisms that cause breast cancer metastasis. To address this issue, we performed DNA exome and RNA sequencing of matched primary tumors and multiple metastases from 16 patients, totaling 83 distinct specimens. We identified tumor-specific drivers by integrating known protein-protein network information with RNA expression and somatic DNA alterations and found that genetic drivers were predominantly established in the primary tumor and maintained through metastatic spreading. In addition, our analyses revealed that most genetic drivers were DNA copy number changes, the TP53 mutation was a recurrent founding mutation regardless of subtype, and that multiclonal seeding of metastases was frequent and occurred in multiple subtypes. Genetic drivers unique to metastasis were identified as somatic mutations in the estrogen and androgen receptor genes. These results highlight the complexity of metastatic spreading, be it monoclonal or multiclonal, and suggest that most metastatic drivers are established in the primary tumor, despite the substantial heterogeneity seen in the metastases

    Histological characteristics of singleton placentas delivered before the 28th week of gestation

    Get PDF
    The placenta is a record of the fetal environment and its examination may provide information about the baby’s subsequent growth and development. We describe the histological characteristics of 947 singleton placentas from infants born between 23 and 27 weeks gestation
    corecore