425 research outputs found
Overexpression of β1 integrin contributes to polarity reversal and a poor prognosis of breast invasive micropapillary carcinoma
© Liu et al. Invasive micropapillary carcinoma (IMPC) of the breast is a highly aggressive breast cancer. Polarity reversal exemplified by cluster growth is hypothesized to contribute to the invasiveness and metastasis of IMPC. In this study, we demonstrate that levels of β1 integrin and Rac1 expression were greater in breast IMPC than in invasive breast carcinoma of no specific type and paraneoplastic benign breast tissue. We show that silencing β1 integrin expression using the β1 integrin inhibitor AIIB2 partially restored polarity in IMPC primary cell clusters and downregulated Rac1. Thus, overexpression of β1 integrin upregulates Rac1. Univariate analysis showed that overexpression of β1 integrin and Rac1 was associated with breast cancer cell polarity reversal, lymph node metastasis, and poor disease-free survival in IMPC patients. Multivariate analysis revealed that polarity reversal was an independent predictor of poor disease-free survival. These findings indicate that overexpression of β1 integrin and the resultant upregulation of Rac1 contribute to polarity reversal and metastasis of breast IMPC, and that β1 integrin and Rac1 could be potential prognostic biomarkers and targets for treatment of breast IMPC
A new method for grain refinement in magnesium alloy: High speed extrusion machining
Magnesium alloys have received broad attentions in industry due to their competitive strength to density ratio, but the poor ductility and strength limit their wide range of applications as engineering materials. A novel severe plastic deformation (SPD) technique of high speed extrusion machining (HSEM) was used here. This method could improve the aforementioned disadvantages of magnesium alloys by one single processing step. In this work, systematic HSEM experiments with different chip thickness ratios were conducted for magnesium alloy AZ31B. The microstructure of the chips reveals that HSEM is an effective SPD method for attaining magnesium alloys with different grain sizes and textures. The magnesium alloy with bimodal grain size distribution has increased mechanical properties than initial sample. The electron backscatter diffraction (EBSD) analysis shows that the dynamic recrystallization (DRX) affects the grain refinement and resulting hardness in AZ31B. Based on the experimental observations, a new theoretical model is put forward to describe the effect of DRX on materials during HSEM. Compared with the experimental measurements, the theoretical model is effective to predict the mechanical property of materials after HSEM. (c) 2015 Elsevier B.V. All rights reserved
Enhanced tensile ductility and strength of electrodeposited ultrafine-grained nickel with a desired bimodal microstructure
This work aims to use surfactant-assisted direct current electrodeposition technique to prepare four types of bimodal nickel, under different current densities. Bimodal Ni is obtained with different grain size and spatial distribution of CG and UFG areas showing a big disparity in mechanical properties. As a result of small population of coarse-grained surrounded by quite a lot of ultrafine-grained forming a unique shell-and-core bimodal structure, bimodal one present the best comprehensive mechanical properties with an ultrahigh tensile strength (similar to 847 MPa) and a considerable plastic strain (similar to 16.7%). Deformation initial, bimodal structures display more positive strain hardening to meaningful strains than unimodal structure of UFG and CG. Particularly bimodal one work-hardening rate is the highest thanks to its structure (UFG occupy 76.7% in total number fraction) and the distribution of growth twins. Growth twins in this article are referred to Sigma 3(111) coherent twins playing an important role in improving high strength, enhancing uniform plastic deformation ability
Levels and patterns of organochlorine pesticides in agricultural soils in an area of extensive historical cotton cultivation in Henan province, China
Organochlorine pesticides (OCPs) have attracted widespread concern because of their environmental persistence and toxicity. The historical influence of different agricultural land use types on soil concentrations of OCP residues was investigated by collecting a total of 52 surface soil samples from long-term cotton fields and fields with other crops in Lvdian township, Henan province, eastern central China. The concentration, composition, and possible sources of 16 OCPs were determined and a health risk assessment of these soils was conducted. Hexachlorocyclohexane (HCH), heptachlor, chlordane, and dichloro diphenyl trichloroethane plus its main metabolites (DDTs) were the most frequently detected OCPs with concentrations of 2.9-56.4 ng g(-1), 4.3-14.0 ng g(-1), 18.0-1254.4 ng g(-1), and below detection limit (BDL) -206.1 ng g(-1), respectively. Analysis of variance of p,p-DDE shows significant (P < 0.05) differences while other OCPs show no significant differences between historical cotton fields and fields containing other crops. Compositional analysis suggests that the HCH is derived mainly from the use of lindane and that there are recent inputs. Analysis of variance and compositional analysis indicate that the p,p-DDE in surface soil from long-term cotton fields is derived mainly from the aerobic biodegradation of historical residues. The sum of carcinogenic risk values of OCPs for soil samples were found to be 1.58 x 10(-6), posing a low cancer risk to the inhabitants of the region studied
Impact of the Kuroshio intrusion on the nutrient inventory in the upper northern South China Sea: insights from an isopycnal mixing model
Based on four cruises covering a seasonal cycle in 2009-2011, we examined the impact of the Kuroshio intrusion, featured by extremely oligotrophic waters, on the nutrient inventory in the central northern South China Sea (NSCS). The nutrient inventory in the upper 100m of the water column in the study area ranged from similar to 200 to similar to 290 mmol m(-2) for N+N (nitrate plus nitrite), from similar to 13 to similar to 24 mmol m(-2) for soluble reactive phosphate and from similar to 210 to similar to 430 mmol m(-2) for silicic acid. The nutrient inventory showed a clear seasonal pattern with the highest value appearing in summer, while the N+N inventory in spring and winter had a reduction of similar to 13 and similar to 30 %, respectively, relative to that in summer. To quantify the extent of the Kuroshio intrusion, an isopycnal mixing model was adopted to derive the proportional contribution of water masses from the SCS proper and the Kuroshio along individual isopycnal surfaces. The derived mixing ratio along the isopycnal plane was then employed to predict the genuine gradients of nutrients under the assumption of no biogeochemical alteration. These predicted nutrient concentrations, denoted as N-m, are solely determined by water mass mixing. Results showed that the nutrient inventory in the upper 100m of the NSCS was overall negatively correlated to the Kuroshio water fraction, suggesting that the Kuroshio intrusion significantly influenced the nutrient distribution in the SCS and its seasonal variation. The difference between the observed nutrient concentrations and their corresponding Nm allowed us to further quantify the nutrient removal/addition associated with the biogeochemical processes on top of the water mass mixing. We revealed that the nutrients in the upper 100m of the water column had a net consumption in both winter and spring but a net addition in fall.Based on four cruises covering a seasonal cycle in 2009-2011, we examined the impact of the Kuroshio intrusion, featured by extremely oligotrophic waters, on the nutrient inventory in the central northern South China Sea (NSCS). The nutrient inventory in the upper 100m of the water column in the study area ranged from similar to 200 to similar to 290 mmol m(-2) for N+N (nitrate plus nitrite), from similar to 13 to similar to 24 mmol m(-2) for soluble reactive phosphate and from similar to 210 to similar to 430 mmol m(-2) for silicic acid. The nutrient inventory showed a clear seasonal pattern with the highest value appearing in summer, while the N+N inventory in spring and winter had a reduction of similar to 13 and similar to 30 %, respectively, relative to that in summer. To quantify the extent of the Kuroshio intrusion, an isopycnal mixing model was adopted to derive the proportional contribution of water masses from the SCS proper and the Kuroshio along individual isopycnal surfaces. The derived mixing ratio along the isopycnal plane was then employed to predict the genuine gradients of nutrients under the assumption of no biogeochemical alteration. These predicted nutrient concentrations, denoted as N-m, are solely determined by water mass mixing. Results showed that the nutrient inventory in the upper 100m of the NSCS was overall negatively correlated to the Kuroshio water fraction, suggesting that the Kuroshio intrusion significantly influenced the nutrient distribution in the SCS and its seasonal variation. The difference between the observed nutrient concentrations and their corresponding Nm allowed us to further quantify the nutrient removal/addition associated with the biogeochemical processes on top of the water mass mixing. We revealed that the nutrients in the upper 100m of the water column had a net consumption in both winter and spring but a net addition in fall
Mechanical behavior and properties of hydrogen bonded graphene/polymer nano-interfaces
There is increasing evidence in literature for significant improvements in both toughness and strength of graphene-based nanocomposites through engineering their nano-interfaces with hydrogen bonds (H-bonds). However, the underlying mechanical behaviors and properties of these H-bonded interfaces at the microscopic level were still not experimentally clarified and evaluated. Herein, this work reports a study on the interfacial stress transfer between a monolayer graphene and a commonly used poly(-methyl methacrylate) (PMMA) matrix under pristine vdW and modified H-bonding interactions. A nonlinear shear-lag model considering friction beyond linear bonding was proposed to understand evolution of interfacial stresses and further identify key interfacial parameters (such as interfacial stiffness, strength, frictional stress and adhesion energy) with the aid of in situ Raman spectroscopy and atomic force microscopy. The present study can provide fundamental insight into the reinforcing mechanism and unique mechanical behavior of chemically modified graphene nano-interfaces and develop further a basis for interfacial optimal design of graphene-based high-performance nanocomposites. (C) 2016 Published by Elsevier Ltd
New progress in LURR-integrating with the dimensional method
The evolution laws of LURR (Loading-Unloading Response Ratio) before strong earthquakes, especially the peak point of LURR, are described in this paper. The results of four methods (experimental, numerical simulation, seismic data analysis and with damage mechanics analysis) lead to a consistent conclusion-the evolution laws of LURR before strong earthquakes are that, at the early stage of the seismic cycle, LURR will fluctuate around 1 and in the late stage, it rises swiftly and to its peak point. At some time after this peak point, a catastrophic event or events occur. These do not occur at the peak point, but lag behind. The lag time which is denoted by T (2) depends on the magnitude M of the upcoming earthquake among other factors. In order to consider the influence of geophysical parameters in a specific region such as E (a) and J ((t)), where is the shear strain rate of tectonic loading in situ, E (a) is the sum of radiated energy of all earthquake occurring in a specific region measured during a long time duration (110 years in this paper) divided by the area of the region and the time duration, and J ((t)) is a parameter denoting the LURR anomaly area weighted with Y (the value of LURR) and represents the expanse and degree of the seismogenic zone. The dimensional analysis method has been used to reveal the relation between M, T (2) and other parameters in situ for more reliable earthquake prediction
Constructing a new integrated genetic linkage map and mapping quantitative trait loci for vegetative mycelium growth rate in Lentinula edodes
The most saturated linkage map for Lentinula edodes to date was constructed based on a mono-. karyotic population of 146 single spore isolates (SSIs) using sequence-related amplified polymorphism (SRAP), target region amplification polymorphism (TRAP), insertion deletion (InDel) markers, and the mating-type loci. Five hundred and twenty-four markers were located on 13 linkage groups (LGs). The map spanned a total length of 1006.1 cM, with an average marker spacing of 2.0 cM. Quantitative trait loci (QTLs) mapping was utilized to uncover the loci regulating and controlling the vegetative mycelium growth rate on various synthetic media, and complex medium for commercial cultivation of L. edodes. Two and 13 putative QTLs, identified respectively in the monokaryotic population and two testcross dikaryotic populations, were mapped on seven different LGs. Several vegetative mycelium growth rate-related QTLs uncovered here were clustered on LG4 (Qmgr1, Qdgr1, Qdgr2 and Qdgr9) and LG6 (Qdgr3, Qdgr4 and Qdgr5), implying the presence of main genomic areas responsible for growth rate regulation and control. The QTL hotspot region on LG4 was found to be in close proximity to:the region containing the mating-type A (MAT-A) locus. Moreover, Qdgr2 on LG4 was detected on different media, contributing 8.07%-23.71% of the phenotypic variation. The present study provides essential information for QTL mapping and marker-assisted selection (MAS) in L. edodes. (C) 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.The most saturated linkage map for Lentinula edodes to date was constructed based on a mono-. karyotic population of 146 single spore isolates (SSIs) using sequence-related amplified polymorphism (SRAP), target region amplification polymorphism (TRAP), insertion deletion (InDel) markers, and the mating-type loci. Five hundred and twenty-four markers were located on 13 linkage groups (LGs). The map spanned a total length of 1006.1 cM, with an average marker spacing of 2.0 cM. Quantitative trait loci (QTLs) mapping was utilized to uncover the loci regulating and controlling the vegetative mycelium growth rate on various synthetic media, and complex medium for commercial cultivation of L. edodes. Two and 13 putative QTLs, identified respectively in the monokaryotic population and two testcross dikaryotic populations, were mapped on seven different LGs. Several vegetative mycelium growth rate-related QTLs uncovered here were clustered on LG4 (Qmgr1, Qdgr1, Qdgr2 and Qdgr9) and LG6 (Qdgr3, Qdgr4 and Qdgr5), implying the presence of main genomic areas responsible for growth rate regulation and control. The QTL hotspot region on LG4 was found to be in close proximity to:the region containing the mating-type A (MAT-A) locus. Moreover, Qdgr2 on LG4 was detected on different media, contributing 8.07%-23.71% of the phenotypic variation. The present study provides essential information for QTL mapping and marker-assisted selection (MAS) in L. edodes. (C) 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved
Differential regulation of stiffness, topography, and dimension of substrates in rat mesenchymal stem cells
The physiological microenvironment of the stem cell niche, including the three factors of stiffness, topography, and dimension, is crucial to stem cell proliferation and differentiation. Although a growing body of evidence is present to elucidate the importance of these factors individually, the interaction of the biophysical parameters of the factors remains insufficiently characterized, particularly for stem cells. To address this issue fully, we applied a micro-fabricated polyacrylamide hydrogel substrate with two elasticities, two topographies, and three dimensions to systematically test proliferation, morphology and spreading, differentiation, and cytoskeletal re-organization of rat bone marrow mesenchymal stem cells (rBMSCs) on twelve cases. An isolated but not combinatory impact of the factors was found regarding the specific functions. Substrate stiffness or dimension is predominant in regulating cell proliferation by fostering cell growth on stiff, unevenly dimensioned substrate. Topography is a key factor for manipulating cell morphology and spreading via the formation of a large spherical shape in a pillar substrate but not in a grooved substrate. Although stiffness leads to osteogenic or neuronal differentiation of rBMSCs on a stiff or soft substrate, respectively, topography or dimension also plays a lesser role in directing cell differentiation. Neither an isolated effect nor a combinatory effect was found for actin or tubulin expression, whereas a seemingly combinatory effect of topography and dimension was found in manipulating vimentin expression. These results further the understandings of stem cell proliferation, morphology, and differentiation in a physiologically mimicking microenvironment
Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme
The three-dimensional premixed H-2-O-2 detonation propagation in rectangular ducts is simulated using an in-house parallel detonation code based on the second-order space-time conservation element and solution element (CE/SE) scheme. The simulation reproduces three typical cellular structures by setting appropriate cross-sectional size and initial perturbation in square tubes. As the cross-sectional size decreases, critical cellular structures transforming the rectangular or diagonal mode into the spinning mode are obtained and discussed in the perspective of phase variation as well as decreasing of triple point lines. Furthermore, multiple cellular structures are observed through examples with typical aspect ratios. Utilizing the visualization of detailed three-dimensional structures, their formation mechanism is further analyzed
- …