28 research outputs found
Recommended from our members
DNA Ligase-Mediated Translation of DNA Into Densely Functionalized Nucleic Acid Polymers
We developed a method to translate DNA sequences into densely functionalized nucleic acids by using T4 DNA ligase to mediate the DNA-templated polymerization of 5′-phosphorylated trinucleotides containing a wide variety of appended functional groups. This polymerization proceeds sequence specifically along a DNA template and can generate polymers of at least 50 building blocks (150 nucleotides) in length with remarkable efficiency. The resulting single-stranded highly modified nucleic acid is a suitable template for primer extension using deep vent (exo-) DNA polymerase, thereby enabling the regeneration of template DNA. We integrated these capabilities to perform iterated cycles of in vitro translation, selection, and template regeneration on libraries of modified nucleic acid polymers.Chemistry and Chemical Biolog
Recommended from our members
In vivo continuous directed evolution
The development and application of methods for the laboratory evolution of biomolecules has rapidly progressed over the last few decades. Advancements in continuous microbe culturing and selection design have facilitated the development of new technologies that enable the continuous directed evolution of proteins and nucleic acids. These technologies have the potential to support the extremely rapid evolution of biomolecules with tailor-made functional properties. Continuous evolution methods must support all of the key steps of laboratory evolution—translation of genes into gene products, selection or screening, replication of genes encoding the most fit gene products, and mutation of surviving genes—in a self-sustaining manner that requires little or no researcher intervention. Continuous laboratory evolution has been historically used to study problems including antibiotic resistance, organismal adaptation, phylogenetic reconstruction, and
host-pathogen interactions, with more recent applications focusing on the rapid generation of proteins and nucleic acids with useful, tailor-made properties. The advent of increasingly general methods for continuous directed evolution should enable researchers to address increasingly complex questions and to access biomolecules with more novel or even unprecedented properties.Chemistry and Chemical Biolog
Recommended from our members
Discovery of widespread GTP-binding motifs in genomic DNA and RNA
Biological RNAs that bind small-molecules have been implicated in a variety of regulatory and catalytic processes. Inspired by these examples, we used in vitro selection to search a pool of genomeencoded RNA fragments for naturally occurring GTP aptamers. Several classes of aptamers were identified, including one ("the G motif") with a G-quadruplex structure. Further analysis revealed that most RNA and DNA G-quadruplexes bind GTP. The G motif is abundant in eukaryotes, and the human genome contains ∼75,000 examples with dissociation constants comparable to the GTP concentration of a eukaryotic cell (∼300 μM). G-quadruplexes play roles in diverse cellular processes, and our findings raise the possibility that GTP may play a role in the function of these elements. Consistent with this possibility, the sequence requirements of several classes of regulatory G-quadruplexes parallel those of GTP binding.Chemistry and Chemical Biolog
Recommended from our members
Directed Evolution of a Small-Molecule-Triggered Intein with Improved Splicing Properties in Mammalian Cells
Laboratory-created small-molecule-dependent inteins enable protein structure and function to be controlled post-translationally in living cells. Previously we evolved two inteins (2-4 and 3-2) that splice efficiently in the presence, but not the absence, of the cell-permeable small molecule 4-hydroxytamoxifen (4-HT) in a variety of extein contexts in Saccharomyces cerevisiae. In mammalian cells, however, the 2-4 and 3-2 inteins exhibited significantly lower splicing efficiencies and slower splicing in the presence of 4-HT, as well as higher background splicing in the absence of 4-HT, than in yeast cells. In this work we evolved the 2-4 and 3-2 inteins through several additional rounds of mutation, recombination, and screening in S. cerevisiae at both 30 °C and 37 °C. The resulting second-generation evolved inteins exhibit substantially improved (~2- to 5-fold higher) splicing yields in yeast compared to the parental 2-4 and 3-2 inteins and significantly faster splicing kinetics. The improved properties of these evolved inteins carried over to mammalian cells, in which the newly evolved inteins spliced with substantially greater (~2- to 8-fold) efficiency in the presence of 4-HT while maintaining background splicing levels in the absence of 4-HT that are comparable to or better than the levels observed with the 2-4 or 3-2 inteins. In total, these inteins were tested in four different protein contexts in yeast and human cells and found to exhibit their substantially improved properties in all contexts tested, typically resulting in 50–90% spliced protein in the presence of 4-HT and < 5% splicing in the absence of 4-HT. The second-generation evolved inteins augment the promise of ligand-dependent protein splicing as an effective and broadly applicable approach to probing protein function in mammalian cells.Chemistry and Chemical Biolog
Recommended from our members
A Chemical Screen for Biological Small Molecule-RNA Conjugates Reveals CoA-Linked RNA
Compared with the rapidly expanding set of known biological roles for RNA, the known chemical diversity of cellular RNA has remained limited primarily to canonical RNA, 3'-aminoacylated tRNAs, nucleobase-modified RNAs, and 5'-capped mRNAs in eukaryotes. We developed two methods to detect in a broad manner chemically labile cellular small molecule-RNA conjugates. The methods were validated by the detection of known tRNA and rRNA modifications. The first method analyzes small molecules cleaved from RNA by base or nucleophile treatment. Application to Escherichia coli and Streptomyces venezuelae RNA revealed an RNA-linked hydroxyfuranone or succinyl ester group, in addition to a number of other putative small molecule-RNA conjugates not previously reported. The second method analyzes nuclease-generated mononucleotides before and after treatment with base or nucleophile and also revealed a number of new putative small molecule-RNA conjugates, including 3'-dephospho-CoA and its succinyl-, acetyl-, and methylmalonyl-thioester derivatives. Subsequent experiments established that these CoA species are attached to E. coli and S. venezuelae RNA at the 5' terminus. CoA-linked RNA cannot be generated through aberrant transcriptional initiation by E. coli RNA polymerase in vitro, and CoA-linked RNA in E. coli is only found among smaller (approximately < 200 nucleotide) RNAs that have yet to be identified. These results provide examples of small molecule-RNA conjugates and suggest that the chemical diversity of cellular RNA may be greater than previously understood.Chemistry and Chemical Biolog
The Behaviour of 5-Hydroxymethylcytosine in Bisulfite Sequencing
Background: We recently showed that enzymes of the TET family convert 5-mC to 5-hydroxymethylcytosine (5-hmC) in DNA. 5-hmC is present at high levels in embryonic stem cells and Purkinje neurons. The methylation status of cytosines is typically assessed by reaction with sodium bisulfite followed by PCR amplification. Reaction with sodium bisulfite promotes cytosine deamination, whereas 5-methylcytosine (5-mC) reacts poorly with bisulfite and is resistant to deamination. Since 5-hmC reacts with bisulfite to yield cytosine 5-methylenesulfonate (CMS), we asked how DNA containing 5-hmC behaves in bisulfite sequencing. Methodology/Principal Findings: We used synthetic oligonucleotides with different distributions of cytosine as templates for generation of DNAs containing C, 5-mC and 5-hmC. The resulting DNAs were subjected in parallel to bisulfite treatment, followed by exposure to conditions promoting cytosine deamination. The extent of conversion of 5-hmC to CMS was estimated to be 99.7%. Sequencing of PCR products showed that neither 5-mC nor 5-hmC undergo C-to-T transitions after bisulfite treatment, confirming that these two modified cytosine species are indistinguishable by the bisulfite technique. DNA in which CMS constituted a large fraction of all bases (28/201) was much less efficiently amplified than DNA in which those bases were 5-mC or uracil (the latter produced by cytosine deamination). Using a series of primer extension experiments, we traced the inefficient amplification of CMS-containing DNA to stalling of Taq polymerase at sites of CM
Recommended from our members
Small-molecule discovery from DNA-encoded chemical libraries
Researchers seeking to improve the efficiency and cost effectiveness of the bioactive small-molecule discovery process have recently embraced selection-based approaches, which in principle offer much higher throughput and simpler infrastructure requirements compared with traditional small-molecule screening methods. Since selection methods benefit greatly from an information-encoding molecule that
can be readily amplified and decoded, several academic and industrial groups have turned to DNA as the basis for library encoding and, in some cases, library synthesis. The resulting DNA-encoded synthetic small-molecule libraries, integrated with the high sensitivity of PCR and the recent development of ultra high-throughput DNA sequencing technology, can be evaluated very rapidly for binding or bond formation with a target of interest while consuming minimal quantities of material and requiring only modest investments of time and equipment. In this tutorial review we describe the development of two classes of approaches for encoding chemical structures and reactivity with DNA: DNA-recorded library synthesis, in which encoding and library synthesis take place separately, and DNA-directed library synthesis, in which DNA both encodes and templates library synthesis. We also describe in vitro
selection methods used to evaluate DNA-encoded libraries and summarize successful applications of these approaches to the discovery of bioactive small molecules and novel chemical reactivity.Chemistry and Chemical Biolog
Recommended from our members
Highly Specific, Bi-substrate-Competitive Src Inhibitors from DNA-Templated Macrocycles
Protein kinases are attractive therapeutic targets, but their high sequence and structural conservation complicates the development of specific inhibitors. We recently discovered from a DNA-templated macrocycle library inhibitors with unusually high selectivity among Src-family kinases. Starting from these compounds, we developed and characterized in molecular detail potent macrocyclic inhibitors of Src kinase and its cancer-associated gatekeeper mutant. We solved two co-crystal structures of macrocycles bound to Src kinase. These structures reveal the molecular basis of the combined ATP- and substrate peptide-competitive inhibitory mechanism and the remarkable kinase specificity of the compounds. The most potent compounds inhibit Src activity in cultured mammalian cells. Our work establishes that macrocycles can inhibit protein kinases through a bi-substrate competitive mechanism with high potency and exceptional specificity, reveals the precise molecular basis for their desirable properties, and provides new insights into the development of Src-specific inhibitors with potential therapeutic relevance.Chemistry and Chemical Biolog
Recommended from our members
Cellular uptake mechanisms and endosomal trafficking of supercharged proteins
Supercharged proteins can deliver functional macromolecules into the cytoplasm of mammalian cells with potencies that exceed those of cationic peptides. The structural features of supercharged proteins that determine their delivery effectiveness and the intracellular fate of supercharged proteins once they enter cells have not yet been studied. Using a large set of supercharged GFP(scGFP) variants, we found that the level of cellular uptake is sigmoidally related to net charge, and that scGFPs enter cells through multiple pathways including clathrin-dependent endocytosis and macropinocytosis. Supercharged proteins activate Rho and ERK1/2, and also alter the endocytic transport of transferrin and EGF. Finally, we discovered that the intracellular trafficking of endosomes containing scGFPs is altered in a manner that correlates with protein delivery potency. Collectively, our findings establish basic structure-activity relationships of supercharged proteins and implicate the modulation of endosomal trafficking as a determinant of cell-penetration and macromolecule-delivery efficiency.Chemistry and Chemical Biolog
Recommended from our members
A population-based experimental model for protein evolution: Effects of mutation rate and selection stringency on evolutionary outcomes
Protein evolution is a critical component of organismal evolution and a valuable method for the generation of useful molecules in the laboratory. Few studies, however, have experimentally characterized how fundamental parameters influence protein evolution outcomes over long evolutionary trajectories or multiple replicates. In this work, we applied phage-assisted continuous evolution (PACE) as an experimental platform to study evolving protein populations over hundreds of rounds of evolution. We varied evolutionary conditions as T7 RNA polymerase evolved to recognize the T3 promoter DNA sequence and characterized how specific combinations of both mutation rate and selection stringency reproducibly result in different evolutionary outcomes. We observed significant and dramatic increases in the activity of the evolved RNA polymerase variants on the desired target promoter after 96 hours of selection, confirming positive selection occurred under all conditions. We used high-throughput sequencing to quantitatively define convergent genetic solutions, including mutational “signatures” and non-signature mutations that map to specific regions of protein sequence. These findings illuminate key determinants of evolutionary outcomes, inform the design of future protein evolution experiments, and demonstrate the value of PACE as a method to study protein evolution.Chemistry and Chemical Biolog