437 research outputs found
Inverse problems and uncertainty quantification
In a Bayesian setting, inverse problems and uncertainty quantification (UQ) -
the propagation of uncertainty through a computational (forward) model - are
strongly connected. In the form of conditional expectation the Bayesian update
becomes computationally attractive. This is especially the case as together
with a functional or spectral approach for the forward UQ there is no need for
time-consuming and slowly convergent Monte Carlo sampling. The developed
sampling-free non-linear Bayesian update is derived from the variational
problem associated with conditional expectation. This formulation in general
calls for further discretisation to make the computation possible, and we
choose a polynomial approximation. After giving details on the actual
computation in the framework of functional or spectral approximations, we
demonstrate the workings of the algorithm on a number of examples of increasing
complexity. At last, we compare the linear and quadratic Bayesian update on the
small but taxing example of the chaotic Lorenz 84 model, where we experiment
with the influence of different observation or measurement operators on the
update.Comment: 25 pages, 17 figures. arXiv admin note: text overlap with
arXiv:1201.404
Quantification of airfoil geometry-induced aerodynamic uncertainties - comparison of approaches
Uncertainty quantification in aerodynamic simulations calls for efficient
numerical methods since it is computationally expensive, especially for the
uncertainties caused by random geometry variations which involve a large number
of variables. This paper compares five methods, including quasi-Monte Carlo
quadrature, polynomial chaos with coefficients determined by sparse quadrature
and gradient-enhanced version of Kriging, radial basis functions and point
collocation polynomial chaos, in their efficiency in estimating statistics of
aerodynamic performance upon random perturbation to the airfoil geometry which
is parameterized by 9 independent Gaussian variables. The results show that
gradient-enhanced surrogate methods achieve better accuracy than direct
integration methods with the same computational cost
Parameter Estimation via Conditional Expectation --- A Bayesian Inversion
When a mathematical or computational model is used to analyse some system, it
is usual that some parameters resp.\ functions or fields in the model are not
known, and hence uncertain. These parametric quantities are then identified by
actual observations of the response of the real system. In a probabilistic
setting, Bayes's theory is the proper mathematical background for this
identification process. The possibility of being able to compute a conditional
expectation turns out to be crucial for this purpose. We show how this
theoretical background can be used in an actual numerical procedure, and
shortly discuss various numerical approximations
GENERACJE W SIECIACH BAYESOWSKICH
This paper focuses on the study of some aspects of the theory of oriented graphs in Bayesian networks. In some papers on the theory of Bayesian networks, the concept of “Generation of vertices” denotes a certain set of vertices with many parents belonging to previous generations. Terminology for this concept, in our opinion, has not yet fully developed. The concept of “Generation” in some cases makes it easier to solve some problems in Bayesian networks and to build simpler algorithms.
In this paper we will consider the well-known example “Asia”, described in many articles and books, as well as in the technical documentation for various toolboxes. For the construction of this example, we have used evaluation versions of AgenaRisk.Niniejszy artykuł koncentruje się na badaniu pewnych aspektów teorii zorientowanych grafów w sieciach bayesowskich. W niektórych artykułach na temat teorii sieci bayesowskich pojęcie „generacji wierzchołków” oznacza pewien zestaw wierzchołków z wieloma rodzicami należącymi do poprzednich generacji. Terminologia tego pojęcia, naszym zdaniem, nie została jeszcze w pełni rozwinięta. Koncepcja „Generacji” w niektórych przypadkach ułatwia rozwiązywanie niektórych problemów w sieciach bayesowskich i budowanie prostszych algorytmów.
W tym artykule rozważymy dobrze znany przykład „Azja”, opisany w wielu artykułach i książkach, a także w dokumentacji technicznej różnych zestawów narzędzi. Do budowy tego przykładu wykorzystaliśmy wersje testowe AgenaRisk
- …