156 research outputs found
A Hierarchical Dirichlet Process Model with Multiple Levels of Clustering for Human EEG Seizure Modeling
Driven by the multi-level structure of human intracranial
electroencephalogram (iEEG) recordings of epileptic seizures, we introduce a
new variant of a hierarchical Dirichlet Process---the multi-level clustering
hierarchical Dirichlet Process (MLC-HDP)---that simultaneously clusters
datasets on multiple levels. Our seizure dataset contains brain activity
recorded in typically more than a hundred individual channels for each seizure
of each patient. The MLC-HDP model clusters over channels-types, seizure-types,
and patient-types simultaneously. We describe this model and its implementation
in detail. We also present the results of a simulation study comparing the
MLC-HDP to a similar model, the Nested Dirichlet Process and finally
demonstrate the MLC-HDP's use in modeling seizures across multiple patients. We
find the MLC-HDP's clustering to be comparable to independent human physician
clusterings. To our knowledge, the MLC-HDP model is the first in the epilepsy
literature capable of clustering seizures within and between patients.Comment: ICML201
Mining Terabytes of Submillimeter-resolution ECoG Datasets for Neurophysiologic Biomarkers
Recent research in brain-machine interfaces and devices to treat neurological disease indicate that important network activity exists at temporal and spatial scales beyond the resolution of existing implantable devices. We present innovations in both hardware and software that allow sampling and interpretation of data from brain networks from hundreds or thousands of sensors at submillimeter resolution. These innovations consist of novel flexible, active electrode arrays and unsupervised algorithms for detecting and classifying neurophysiologic biomarkers, specifically high frequency oscillations. We propose these innovations as the foundation for a new generation of closed loop diagnostic and therapeutic medical devices, and brain-machine interfaces
Nonparametric Multi-Level Clustering of Human Epilepsy Seizures
Understanding neuronal activity in the human brain is an extremely difficult problem both in terms of measurement and statistical modeling. We address a particular research question in this area: the analysis of human intracranial electroencephalogram (iEEG) recordings of epileptic seizures from a collection of patients. In these data, each seizure of each patient is defined by the activities of many individual recording channels. The modeling of epileptic seizures is challenging due the large amount of heterogeneity in iEEG signal between channels within a particular seizure, between seizures within an individual, and across individuals. We develop a new nonparametric hierarchical Bayesian model that simultaneously addresses these multiple levels of heterogeneity in our epilepsy data. Our approach, which we call a multi-level clustering hierarchical Dirichlet process (MLC-HDP), clusters over channel activities within a seizure, over seizures of a patient and over patients. We demonstrate the advantages of our methodology over alternative approaches in human EEG seizure data and show that its seizure clustering is close to manual clustering by a physician expert. We also address important clinical questions like “to which seizures of other patients is this seizure similar?
Genetic and Neuroanatomical Support for Functional Brain Network Dynamics in Epilepsy
Focal epilepsy is a devastating neurological disorder that affects an
overwhelming number of patients worldwide, many of whom prove resistant to
medication. The efficacy of current innovative technologies for the treatment
of these patients has been stalled by the lack of accurate and effective
methods to fuse multimodal neuroimaging data to map anatomical targets driving
seizure dynamics. Here we propose a parsimonious model that explains how
large-scale anatomical networks and shared genetic constraints shape
inter-regional communication in focal epilepsy. In extensive ECoG recordings
acquired from a group of patients with medically refractory focal-onset
epilepsy, we find that ictal and preictal functional brain network dynamics can
be accurately predicted from features of brain anatomy and geometry, patterns
of white matter connectivity, and constraints complicit in patterns of gene
coexpression, all of which are conserved across healthy adult populations.
Moreover, we uncover evidence that markers of non-conserved architecture,
potentially driven by idiosyncratic pathology of single subjects, are most
prevalent in high frequency ictal dynamics and low frequency preictal dynamics.
Finally, we find that ictal dynamics are better predicted by white matter
features and more poorly predicted by geometry and genetic constraints than
preictal dynamics, suggesting that the functional brain network dynamics
manifest in seizures rely on - and may directly propagate along - underlying
white matter structure that is largely conserved across humans. Broadly, our
work offers insights into the generic architectural principles of the human
brain that impact seizure dynamics, and could be extended to further our
understanding, models, and predictions of subject-level pathology and response
to intervention
Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis.
Experimental prolonged febrile seizures (FS) lead to structural and molecular changes that promote hippocampal hyperexcitability and reduce seizure threshold to further convulsants. However, whether these seizures provoke later-onset epilepsy, as has been suspected in humans, has remained unclear. Previously, intermittent EEGs with behavioural observations for motor seizures failed to demonstrate spontaneous seizures in adult rats subjected to experimental prolonged FS during infancy. Because limbic seizures may be behaviourally subtle, here we determined the presence of spontaneous limbic seizures using chronic video monitoring with concurrent hippocampal and cortical EEGs, in adult rats (starting around 3 months of age) that had sustained experimental FS on postnatal day 10. These subjects were compared with groups that had undergone hyperthermia but in whom seizures had been prevented (hyperthermic controls), as well as with normothermic controls. Only events that fulfilled both EEG and behavioural criteria, i.e. electro-clinical events, were considered spontaneous seizures. EEGs (over 400 recorded hours) were normal in all normothermic and hyperthermic control rats, and none of these animals developed spontaneous seizures. In contrast, prolonged early-life FS evoked spontaneous electro-clinical seizures in 6 out of 17 experimental rats (35.2%). These seizures consisted of sudden freezing (altered consciousness) and typical limbic automatisms that were coupled with polyspike/sharp-wave trains with increasing amplitude and slowing frequency on EEG. In addition, interictal epileptiform discharges were recorded in 15 (88.2%) of the experimental FS group and in none of the controls. The large majority of hippocampally-recorded seizures were heralded by diminished amplitude of cortical EEG, that commenced half a minute prior to the hippocampal ictus and persisted after seizure termination. This suggests a substantial perturbation of normal cortical neuronal activity by these limbic spontaneous seizures. In summary, prolonged experimental FS lead to later-onset limbic (temporal lobe) epilepsy in a significant proportion of rats, and to interictal epileptifom EEG abnormalities in most others, and thus represent a model that may be useful to study the relationship between FS and human temporal lobe epilepsy
Intracranial EEG fluctuates over months after implanting electrodes in human brain.
OBJECTIVE: Implanting subdural and penetrating electrodes in the brain causes acute trauma and inflammation that affect intracranial electroencephalographic (iEEG) recordings. This behavior and its potential impact on clinical decision-making and algorithms for implanted devices have not been assessed in detail. In this study we aim to characterize the temporal and spatial variability of continuous, prolonged human iEEG recordings.
APPROACH: Intracranial electroencephalography from 15 patients with drug-refractory epilepsy, each implanted with 16 subdural electrodes and continuously monitored for an average of 18 months, was included in this study. Time and spectral domain features were computed each day for each channel for the duration of each patient\u27s recording. Metrics to capture post-implantation feature changes and inflexion points were computed on group and individual levels. A linear mixed model was used to characterize transient group-level changes in feature values post-implantation and independent linear models were used to describe individual variability.
MAIN RESULTS: A significant decline in features important to seizure detection and prediction algorithms (mean line length, energy, and half-wave), as well as mean power in the Berger and high gamma bands, was observed in many patients over 100 d following implantation. In addition, spatial variability across electrodes declines post-implantation following a similar timeframe. All selected features decreased by 14-50% in the initial 75 d of recording on the group level, and at least one feature demonstrated this pattern in 13 of the 15 patients. Our findings indicate that iEEG signal features demonstrate increased variability following implantation, most notably in the weeks immediately post-implant.
SIGNIFICANCE: These findings suggest that conclusions drawn from iEEG, both clinically and for research, should account for spatiotemporal signal variability and that properly assessing the iEEG in patients, depending upon the application, may require extended monitoring
Temporal Changes of Neocortical High-Frequency Oscillations in Epilepsy
High-frequency (100–500 Hz) oscillations (HFOs) recorded from intracranial electrodes are a potential biomarker for epileptogenic brain. HFOs are commonly categorized as ripples (100–250 Hz) or fast ripples (250–500 Hz), and a third class of mixed frequency events has also been identified. We hypothesize that temporal changes in HFOs may identify periods of increased the likelihood of seizure onset. HFOs (86,151) from five patients with neocortical epilepsy implanted with hybrid (micro + macro) intracranial electrodes were detected using a previously validated automated algorithm run over all channels of each patient\u27s entire recording. HFOs were characterized by extracting quantitative morphologic features and divided into four time epochs (interictal, preictal, ictal, and postictal) and three HFO clusters (ripples, fast ripples, and mixed events). We used supervised classification and nonparametric statistical tests to explore quantitative changes in HFO features before, during, and after seizures. We also analyzed temporal changes in the rates and proportions of events from each HFO cluster during these periods. We observed patient-specific changes in HFO morphology linked to fluctuation in the relative rates of ripples, fast ripples, and mixed frequency events. These changes in relative rate occurred in pre- and postictal periods up to thirty min before and after seizures. We also found evidence that the distribution of HFOs during these different time periods varied greatly between individual patients. These results suggest that temporal analysis of HFO features has potential for designing custom seizure prediction algorithms and for exploring the relationship between HFOs and seizure generation
- …