34 research outputs found

    Synchrotron emission from double-peaked radio light curves of the symbiotic recurrent nova V3890 Sagitarii

    Full text link
    We present radio observations of the symbiotic recurrent nova V3890 Sagitarii following the 2019 August eruption obtained with the MeerKAT radio telescope at 1.28 GHz and Karl G. Janksy Very Large Array (VLA) at 1.26 to 5 GHz. The radio light curves span from day 1 to 540 days after eruption and are dominated by synchrotron emission produced by the expanding nova ejecta interacting with the dense wind from an evolved companion in the binary system. The radio emission is detected early on (day 6) and increases rapidly to a peak on day 15. The radio luminosity increases due to a decrease in the opacity of the circumstellar material in front of the shocked material and fades as the density of the surrounding medium decreases and the velocity of the shock decelerates. Modelling the light curve provides an estimated mass-loss rate of Mwind≈10−8M⊙ yr−1M_{\textrm {wind}} \approx 10^{-8} {\textrm {M}}_\odot~{\textrm {yr}}^{-1} from the red giant star and ejecta mass in the range of Mej=10−5−10−6 M⊙M_{\textrm {ej}}=10^{-5}-10^{-6}~{\textrm {M}}_\odotfrom the surface of the white dwarf. V3890 Sgr likely hosts a massive white dwarf similar to other symbiotic recurrent novae, thus considered a candidate for supernovae type Ia (SNe Ia) progenitor. However, its radio flux densities compared to upper limits for SNe Ia have ruled it out as a progenitor for SN 2011fe

    Shocks and dust formation in nova V809 Cep

    Full text link
    The discovery that many classical novae produce detectable GeV γ\gamma-ray emission has raised the question of the role of shocks in nova eruptions. Here we use radio observations of nova V809 Cep (Nova Cep 2013) with the Jansky Very Large Array to show that it produced non-thermal emission indicative of particle acceleration in strong shocks for more than a month starting about six weeks into the eruption, quasi-simultaneous with the production of dust. Broadly speaking, the radio emission at late times -- more than a six months or so into the eruption -- is consistent with thermal emission from 10−4M⊙10^{-4} M_\odot of freely expanding, 10410^4~K ejecta. At 4.6 and 7.4 GHz, however, the radio light-curves display an initial early-time peak 76 days after the discovery of the eruption in the optical (t0t_0). The brightness temperature at 4.6 GHz on day 76 was greater than 105K10^5 K, an order of magnitude above what is expected for thermal emission. We argue that the brightness temperature is the result of synchrotron emission due to internal shocks within the ejecta. The evolution of the radio spectrum was consistent with synchrotron emission that peaked at high frequencies before low frequencies, suggesting that the synchrotron from the shock was initially subject to free-free absorption by optically thick ionized material in front of the shock. Dust formation began around day 37, and we suggest that internal shocks in the ejecta were established prior to dust formation and caused the nucleation of dust

    A Detailed Observational Analysis of V1324 Sco, the Most Gamma-Ray Luminous Classical Nova to Date

    Full text link
    It has recently been discovered that some, if not all, classical novae emit GeV gamma rays during outburst, but the mechanisms involved in the production of the gamma rays are still not well understood. We present here a comprehensive multi-wavelength dataset---from radio to X-rays---for the most gamma-ray luminous classical nova to-date, V1324 Sco. Using this dataset, we show that V1324 Sco is a canonical dusty Fe-II type nova, with a maximum ejecta velocity of 2600 km s−1^{-1} and an ejecta mass of few ×10−5\times 10^{-5} M⊙_{\odot}. There is also evidence for complex shock interactions, including a double-peaked radio light curve which shows high brightness temperatures at early times. To explore why V1324~Sco was so gamma-ray luminous, we present a model of the nova ejecta featuring strong internal shocks, and find that higher gamma-ray luminosities result from higher ejecta velocities and/or mass-loss rates. Comparison of V1324~Sco with other gamma-ray detected novae does not show clear signatures of either, and we conclude that a larger sample of similarly well-observed novae is needed to understand the origin and variation of gamma rays in novae.Comment: 26 pages, 13 figure
    corecore