72 research outputs found
Complex Formation between NheB and NheC Is Necessary to Induce Cytotoxic Activity by the Three-Component Bacillus cereus Nhe Enterotoxin.
The nonhemolytic enterotoxin (Nhe) is known as a major pathogenicity factor for the diarrheal type of food poisoning caused by Bacillus cereus. The Nhe complex consists of NheA, NheB and NheC, all of them required to reach maximum cytotoxicity following a specific binding order on cell membranes. Here we show that complexes, formed between NheB and NheC under natural conditions before targeting the host cells, are essential for toxicity in Vero cells. To enable detection of NheC and its interaction with NheB, monoclonal antibodies against NheC were established and characterized. The antibodies allowed detection of recombinant NheC in a sandwich immunoassay at levels below 10 ng ml(-1), but no or only minor amounts of NheC were detectable in natural culture supernatants of B. cereus strains. When NheB- and NheC-specific monoclonal antibodies were combined in a sandwich immunoassay, complexes between NheB and NheC could be demonstrated. The level of these complexes was directly correlated with the relative concentrations of NheB and NheC. Toxicity, however, showed a bell-shaped dose-response curve with a plateau at ratios of NheB and NheC between 50:1 and 5:1. Both lower and higher ratios between NheB and NheC strongly reduced cytotoxicity. When the ratio approached an equimolar ratio, complex formation reached its maximum resulting in decreased binding of NheB to Vero cells. These data indicate that a defined level of NheB-NheC complexes as well as a sufficient amount of free NheB is necessary for efficient cell binding and toxicity. Altogether, the results of this study provide evidence that the interaction of NheB and NheC is a balanced process, necessary to induce, but also able to limit the toxic action of Nhe
The ability to enter into an avirulent viable but non-culturable (VBNC) form is widespread among Listeria monocytogenes isolates from salmon, patients and environment
Media-based bacteriological testing will fail to detect non-culturable organisms and the risk of consuming viable but non-culturable (VBNC) Listeria monocytogenes is unknown. We have here studied whether L. monocytogenes obtained from seafoods, processing environment and clinical cases enter the VBNC state and assessed the virulence of the non-culturable forms of the bacteria. A number of 16 L. monocytogenes strains were starved in microcosm water at 4 °C until loss of culturability. Metabolic activity in the VBNC form was measured as ATP generation using a luciferase assay and membrane integrity was examined using the LIVE/DEAD BacLight assay. All tested L. monocytogenes strains entered the VBNC state after starvation in microcosm water. Ongoing mRNA synthesis of hly in VBNC L. monocytogenes cells re-incubated in culture medium indicated a potential virulence of these forms. Sodium pyruvate and replenishment of nutrient were used in attempts to resuscitate VBNC cells. However, VBNC L. monocytogenes were not resuscitated under these conditions. VBNC L. monocytogenes were tested for virulence in a cell plaque assay and by intraperitoneally inoculation in immunodeficient RAG1â/â mice. Inoculation of VBNC L. monocytogenes in immunodeficient mice did not cause morbidity, and plaque assay on HT-29 cells in culture indicated that the VBNC cells were avirulent. The results indicate that the risk of non-culturable L. monocytogenes in foods, when the VBNC state is induced by starvation, is negligible
CodY, a pleiotropic regulator, influences multicellular behaviour and efficient production of virulence factors in Bacillus cereus
In response to nutrient limitation in the environment, the global transcriptional regulator CodY modulates various pathways in low G+C Gram-positive bacteria. In Bacillus subtilis CodY triggers adaptation to starvation by secretion of proteases coupled to the expression of amino acid transporters. Furthermore, it is involved in modulating survival strategies like sporulation, motility, biofilm formation, and CodY is also known to affect virulence factor production in pathogenic bacteria. In this study, the role of CodY in Bacillus cereus ATCC 14579, the enterotoxin-producing type strain, is investigated. A marker-less deletion mutant of codY (?codY) was generated in B. cereus and the transcriptome changes were surveyed using DNA microarrays. Numerous genes involved in biofilm formation and amino acid transport and metabolism were upregulated and genes associated with motility and virulence were repressed upon deletion of codY. Moreover, we found that CodY is important for efficient production of toxins and for adapting from nutrient-rich to nutrient-limited growth conditions of B. cereus. In contrast, biofilm formation is highly induced in the ?codY mutant, suggesting that CodY represses biofilm formation. Together, these results indicate that CodY plays a crucial role in the growth and persistence of B. cereus in different environments such as soil, food, insect guts and the human body
Whole-Genome Sequencing Analysis of Listeria monocytogenes from Rural, Urban, and Farm Environments in Norway: Genetic Diversity, Persistence, and Relation to Clinical and Food Isolates
Listeria monocytogenes is a ubiquitous environmental bacterium associated with a wide variety of natural and human-made environments, such as soil, vegetation, livestock, food processing environments, and urban areas. It is also among the deadliest foodborne pathogens, and knowledge about its presence and diversity in potential sources is crucial to effectively track and control it in the food chain. Isolation of L. monocytogenes from various rural and urban environments showed higher prevalence in agricultural and urban developments than in forest or mountain areas, and that detection was positively associated with rainfall. Whole-genome sequencing (WGS) was performed for the collected isolates and for L. monocytogenes from Norwegian dairy farms and slugs (218 isolates in total). The data were compared to available data sets from clinical and food-associated sources in Norway collected within the last decade. Multiple examples of clusters of isolates with 0 to 8 whole-genome multilocus sequence typing (wgMLST) allelic differences were collected over time in the same location, demonstrating persistence of L. monocytogenes in natural, urban, and farm environments. Furthermore, several clusters with 6 to 20 wgMLST allelic differences containing isolates collected across different locations, times, and habitats were identified, including nine clusters harboring clinical isolates. The most ubiquitous clones found in soil and other natural and animal ecosystems (CC91, CC11, and CC37) were distinct from clones predominating among both clinical (CC7, CC121, and CC1) and food (CC9, CC121, CC7, and CC8) isolates. The analyses indicated that ST91 was more prevalent in Norway than other countries and revealed a high proportion of the hypovirulent ST121 among Norwegian clinical cases.publishedVersio
Transcriptional Responses of Bacillus cereus towards Challenges with the Polysaccharide Chitosan
The antibacterial activity of the polysaccharide chitosan towards different bacterial species has been extensively documented. The response mechanisms of bacteria exposed to this biopolymer and the exact molecular mechanism of action, however, have hardly been investigated. This paper reports the transcriptome profiling using DNA microarrays of the type-strain of Bacillus cereus (ATCC 14579) exposed to subinhibitory concentrations of two water-soluble chitosan preparations with defined chemical characteristics (molecular weight and degree of acetylation (FA)). The expression of 104 genes was significantly altered upon chitosan A (weight average molecular weight (Mw) 36.0 kDa, FAâ=â0.01) exposure and 55 genes when treated with chitosan B (Mw 28.4 kDa, FAâ=â0.16). Several of these genes are involved in ion transport, especially potassium influx (BC0753-BC0756). Upregulation of a potassium transporting system coincides with previous studies showing a permeabilizing effect on bacterial cells of this polymer with subsequent loss of potassium. Quantitative PCR confirmed the upregulation of the BC0753 gene encoding the K+-transporting ATPase subunit A. A markerless gene replacement method was used to construct a mutant strain deficient of genes encoding an ATP-driven K+ transport system (Kdp) and the KdpD sensor protein. Growth of this mutant strain in potassium limiting conditions and under salt stress did not affect the growth pattern or growth yield compared to the wild-type strain. The necessity of the Kdp system for potassium acquisition in B. cereus is therefore questionable. Genes involved in the metabolism of arginine, proline and other cellular constituents, in addition to genes involved in the gluconeogenesis, were also significantly affected. BC2798 encoding a chitin binding protein was significantly downregulated due to chitosan exposure. This study provides insight into the response mechanisms of B. cereus to chitosan treatment and the significance of the Kdp system in potassium influx under challenging conditions
A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD
Soil bacteria are heavily exposed to environmental methylating agents such as methylchloride and may have special requirements for repair of alkylation damage on DNA. We have used functional complementation of an Escherichia coli tag alkA mutant to screen for 3-methyladenine DNA glycosylase genes in genomic libraries of the soil bacterium Bacillus cereus. Three genes were recovered: alkC, alkD and alkE. The amino acid sequence of AlkE is homologous to the E. coli AlkA sequence. AlkC and AlkD represent novel proteins without sequence similarity to any protein of known function. However, iterative and indirect sequence similarity searches revealed that AlkC and AlkD are distant homologues of each other within a new protein superfamily that is ubiquitous in the prokaryotic kingdom. Homologues of AlkC and AlkD were also identified in the amoebas Entamoeba histolytica and Dictyostelium discoideum, but no other eukaryotic counterparts of the superfamily were found. The alkC and alkD genes were expressed in E. coli and the proteins were purified to homogeneity. Both proteins were found to be specific for removal of N-alkylated bases, and showed no activity on oxidized or deaminated base lesions in DNA. B. cereus AlkC and AlkD thus define novel families of alkylbase DNA glycosylases within a new protein superfamily
Structure of the NheA Component of the Nhe Toxin from Bacillus cereus: Implications for Function
The structure of NheA, a component of the Bacillus cereus Nhe tripartite toxin, has been solved at 2.05 Ă
resolution using selenomethionine multiple-wavelength anomalous dispersion (MAD). The structure shows it to have a fold that is similar to the Bacillus cereus Hbl-B and E. coli ClyA toxins, and it is therefore a member of the ClyA superfamily of α-helical pore forming toxins (α-PFTs), although its head domain is significantly enlarged compared with those of ClyA or Hbl-B. The hydrophobic ÎČ-hairpin structure that is a characteristic of these toxins is replaced by an amphipathic ÎČ-hairpin connected to the main structure via a ÎČ-latch that is reminiscent of a similar structure in the ÎČ-PFT Staphylococcus aureus α-hemolysin. Taken together these results suggest that, although it is a member of an archetypal α-PFT family of toxins, NheA may be capable of forming a ÎČ rather than an α pore
The Highly Virulent 2006 Norwegian EHEC O103:H25 Outbreak Strain Is Related to the 2011 German O104:H4 Outbreak Strain
In 2006, a severe foodborne EHEC outbreak occured in Norway. Seventeen cases were recorded and the HUS frequency was 60%. The causative strain, Esherichia coli O103:H25, is considered to be particularly virulent. Sequencing of the outbreak strain revealed resemblance to the 2011 German outbreak strain E. coli O104:H4, both in genome and Shiga toxin 2-encoding (Stx2) phage sequence. The nucleotide identity between the Stx2 phages from the Norwegian and German outbreak strains was 90%. During the 2006 outbreak, stx2-positive O103:H25 E. coli was isolated from two patients. All the other outbreak associated isolates, including all food isolates, were stx-negative, and carried a different phage replacing the Stx2 phage. This phage was of similar size to the Stx2 phage, but had a distinctive early phage region and no stx gene. The sequence of the early region of this phage was not retrieved from the bacterial host genome, and the origin of the phage is unknown. The contaminated food most likely contained a mixture of E. coli O103:H25 cells with either one of the phages
Bacillus cereus cytotoxins Hbl, Nhe and CytK are secreted via the Sec translocation pathway
Background
Bacillus cereus and the closely related Bacillus thuringiensis are Gram positive opportunistic pathogens that may cause food poisoning, and the three secreted pore-forming cytotoxins Hbl, Nhe and CytK have been implicated as the causative agents of diarrhoeal disease. It has been proposed that the Hbl toxin is secreted using the flagellar export apparatus (FEA) despite the presence of Sec-type signal peptides. As protein secretion is of key importance in virulence of a microorganism, the mechanisms by which these toxins are secreted were further investigated.
Results
Sec-type signal peptides were identified in all toxin components, and secretion of Hbl component B was shown to be dependent on an intact Sec-type signal peptide sequence. Further indication that secretion of Hbl, Nhe and CytK is dependent on the Sec translocation pathway, the main pathway on which bacterial secretion relies, was suggested by the observed intracellular accumulation and reduced secretion of the toxins in cultures supplemented with the SecA inhibitor sodium azide. Although a FEA deficient strain (a flhA mutant) showed reduced toxin expression and reduced cytotoxicity, it readily secreted overexpressed Hbl B, showing that the FEA is not required for Hbl secretion. Thus, the concurrent lack of flagella and reduced toxin secretion in the FEA deficient strain may point towards the presence of a regulatory link between motility and virulence genes, rather than FEA-dependent toxin secretion.
Conclusions
The Hbl, Nhe and CytK toxins appear to be secreted using the Sec pathway, and the reduced Hbl expression of a FEA deficient strain was shown not to be due to a secretion defect
- âŠ