28 research outputs found
MetaDreamer: Efficient Text-to-3D Creation With Disentangling Geometry and Texture
Generative models for 3D object synthesis have seen significant advancements
with the incorporation of prior knowledge distilled from 2D diffusion models.
Nevertheless, challenges persist in the form of multi-view geometric
inconsistencies and slow generation speeds within the existing 3D synthesis
frameworks. This can be attributed to two factors: firstly, the deficiency of
abundant geometric a priori knowledge in optimization, and secondly, the
entanglement issue between geometry and texture in conventional 3D generation
methods.In response, we introduce MetaDreammer, a two-stage optimization
approach that leverages rich 2D and 3D prior knowledge. In the first stage, our
emphasis is on optimizing the geometric representation to ensure multi-view
consistency and accuracy of 3D objects. In the second stage, we concentrate on
fine-tuning the geometry and optimizing the texture, thereby achieving a more
refined 3D object. Through leveraging 2D and 3D prior knowledge in two stages,
respectively, we effectively mitigate the interdependence between geometry and
texture. MetaDreamer establishes clear optimization objectives for each stage,
resulting in significant time savings in the 3D generation process. Ultimately,
MetaDreamer can generate high-quality 3D objects based on textual prompts
within 20 minutes, and to the best of our knowledge, it is the most efficient
text-to-3D generation method. Furthermore, we introduce image control into the
process, enhancing the controllability of 3D generation. Extensive empirical
evidence confirms that our method is not only highly efficient but also
achieves a quality level that is at the forefront of current state-of-the-art
3D generation techniques.Comment: arXiv admin note: text overlap with arXiv:2306.17843,
arXiv:2209.14988 by other author
Biodegradation of Dimethyl Phthalate by Freshwater Unicellular Cyanobacteria
The biodegradation characteristics of dimethyl phthalate (DMP) by three freshwater unicellular organisms were investigated in this study. The findings revealed that all the organisms were capable of metabolizing DMP; among them, Cyanothece sp. PCC7822 achieved the highest degradation efficiency. Lower concentration of DMP supported the growth of the Cyanobacteria; however, with the increase of DMP concentration growth of Cyanobacteria was inhibited remarkably. Phthalic acid (PA) was detected to be an intermediate degradation product of DMP and accumulated in the culture solution. The optimal initial pH value for the degradation was detected to be 9.0, which mitigated the decrease of pH resulting from the production of PA. The optimum temperature for DMP degradation of the three species of organisms is 30 ∘ C. After 72 hours' incubation, no more than 11.8% of the residual of DMP aggregated in Cyanobacteria cells while majority of DMP remained in the medium. Moreover, esterase was induced by DMP and the activity kept increasing during the degradation process. This suggested that esterase could assist in the degradation of DMP
Cellular network based multistatic integrated sensing and communication systems
A novel multistatic integrated sensing and communication (ISAC) system based on cellular network is proposed. It can make use of widespread base stations (BSs) to perform cooperative sensing in wide area. This system is important since the deployment of sensing function can be achieved upon the mobile communication network at low complexity and cost without modifying the architecture of BSs for full duplexing. In this work, the topology of sensing cell is first provided, which can be duplicated to seamlessly cover the cellular network. Each sensing cell consists of a single central BS transmitting signals and multiple neighboring BSs receiving reflected signals from sensing objects. Then an estimating approach is described for obtaining position and velocity of sensing objects that locate in the sensing cell. Joint data processing with an efficient optimization method is also provided. In addition, key issues in the cellular network based multistatic ISAC system are analyzed. Simulation results show that the multistatic ISAC system can reduce interference power by over 10 dBm and significantly improve position and velocity estimation accuracy of objects when compared with the monostatic ISAC system, demonstrating the effectiveness and promise of implementing the proposed system in the mobile network