1,696 research outputs found

    Rogue wave pattern of multi-component derivative nonlinear Schrodinger equations

    Full text link
    This paper delves into the study of multi-component derivative nonlinear Schrodinger (n-DNLS) equations featuring nonzero boundary conditions. Employing the Darboux transformation (DT) method, we derive higher-order vector rogue wave solutions for the n-DNLS equations. Specifically, we focus on the distinctive scenario where the (n + 1)-order characteristic polynomial possesses an explicit (n + 1)-multiple root. Additionally, we provide an in-depth analysis of the asymptotic behavior and pattern classification inherent to the higher-order vector rogue wave solution of the n-DNLS equation, particularly when one of the internal parameters attains a significant magnitude. These patterns are related to the root structures in the generalized Wronskian-Hermite polynomial hierarchies

    Mid-infrared variability of changing-look AGN

    Get PDF
    It is known that some active galactic nuclei (AGNs) transited from type 1 to type 2 or vice versa. There are two explanations for the so-called changing look AGNs: one is the dramatic change of the obscuration along the line-of-sight, the other is the variation of accretion rate. In this paper, we report the detection of large amplitude variations in the mid-infrared luminosity during the transitions in 10 changing look AGNs using WISE and newly released NEOWISE-R data. The mid-infrared light curves of 10 objects echoes the variability in the optical band with a time lag expected for dust reprocessing. The large variability amplitude is inconsistent with the scenario of varying obscuration, rather supports the scheme of dramatic change in the accretion rate.Comment: Published by ApjL, 7 pages, 3 figures, 2 table

    A Unified Framework for Mutual Improvement of SLAM and Semantic Segmentation

    Full text link
    This paper presents a novel framework for simultaneously implementing localization and segmentation, which are two of the most important vision-based tasks for robotics. While the goals and techniques used for them were considered to be different previously, we show that by making use of the intermediate results of the two modules, their performance can be enhanced at the same time. Our framework is able to handle both the instantaneous motion and long-term changes of instances in localization with the help of the segmentation result, which also benefits from the refined 3D pose information. We conduct experiments on various datasets, and prove that our framework works effectively on improving the precision and robustness of the two tasks and outperforms existing localization and segmentation algorithms.Comment: 7 pages, 5 figures.This work has been accepted by ICRA 2019. The demo video can be found at https://youtu.be/Bkt53dAehj

    Discovery of a Mid-infrared Echo from the TDE candidate in the nucleus of ULIRG F01004-2237

    Get PDF
    We present the mid-infrared (MIR) light curves (LCs) of a tidal disruption event (TDE) candidate in the center of a nearby ultraluminous infrared galaxy (ULIRG) F01004-2237 using archival {\it WISE} and {\it NEOWISE} data from 2010 to 2016. At the peak of the optical flare, F01004-2237 was IR quiescent. About three years later, its MIR fluxes have shown a steady increase, rising by 1.34 and 1.04 mag in 3.43.4 and 4.6μ4.6\mum up to the end of 2016. The host-subtracted MIR peak luminosity is 23×10442-3\times10^{44}\,erg\,s1^{-1}. We interpret the MIR LCs as an infrared echo, i.e. dust reprocessed emission of the optical flare. Fitting the MIR LCs using our dust model, we infer a dust torus of the size of a few parsecs at some inclined angle. The derived dust temperatures range from 590850590-850\,K, and the warm dust mass is 7M\sim7\,M_{\odot}. Such a large mass implies that the dust cannot be newly formed. We also derive the UV luminosity of 411×10444-11\times10^{44}\,erg\,s1^{-1}. The inferred total IR energy is 12×10521-2\times10^{52}\,erg, suggesting a large dust covering factor. Finally, our dust model suggests that the long tail of the optical flare could be due to dust scattering

    Mid-infrared flare of TDE candidate PS16dtm: dust echo and implications for the spectral evolution

    Get PDF
    PS16dtm was classified as a candidate tidal disruption event (TDE) in a dwarf Seyfert 1 galaxy with low-mass black hole (106M\sim10^6M\odot) and has presented various intriguing photometric and spectra characteristics. Using the archival WISE and the newly released NEOWISE data, we found PS16dtm is experiencing a mid-infrared (MIR) flare which started 11\sim11 days before the first optical detection. Interpreting the MIR flare as a dust echo requires close pre-existing dust with a high covering factor, and suggests the optical flare may have brightened slowly for some time before it became bright detectable from the ground. More evidence is given at the later epochs. At the peak of the optical light curve, the new inner radius of the dust torus has grown to much larger size, a factor of 7 of the initial radius due to strong radiation field. At 150\sim150 days after the first optical detection, the dust temperature has dropped well below the sublimation temperature. Other peculiar spectral features shown by PS16dtm are the transient, prominent FeII emission lines and outflows indicated by broad absorption lines detected during the optical flare. Our model explains the enhanced FeII emission from iron newly released from the evaporated dust. The observed broad absorption line outflow could be explained by accelerated gas in the dust torus due to the radiation pressure.Comment: Accepted by ApJ, 5 figure

    Treated amblyopes remain deficient in spatial vision: A contrast sensitivity and external noise study

    Get PDF
    AbstractTo evaluate residual spatial vision deficits in treated amblyopia, we recruited five clinically treated amblyopes (mean age=10.6 years). Contrast sensitivity functions (CSF) in both the previously amblyopic eyes (pAE; visual acuity=0.944±0.019 MAR) and fellow eyes (pFE; visual acuity=0.936±0.021 MAR) were measured using a standard psychophysical procedure for all the subjects. The results indicated that the treated amblyopes remained deficient in spatial vision, especially at high spatial frequencies, although their Snellen visual acuity had become normal in the pAEs. To identify the mechanisms underlying spatial vision deficits of treated amblyopes, threshold vs external noise contrast (TvC) functions – the signal contrast necessary for the subject to maintain a threshold performance level in varying amounts of external noise (“TV snow”) – were measured in both eyes of four of the subjects in a sine-wave grating detection task at several spatial frequencies. Two mechanisms of amblyopia were identified: increased internal noise at low to medium spatial frequencies, and both increased internal noise and increased impact of external noise at high spatial frequencies. We suggest that, in addition to visual acuity, other tests of spatial vision (e.g., CSF, TvC) should be used to assess treatment outcomes of amblyopia therapies. Training in intermediate and high spatial frequencies may be necessary to fully recover spatial vision in amblyopia in addition to the occlusion therapy

    Effects of MWNT nanofillers on structures and properties of PVA electrospun nanofibres

    Full text link
    In this study, we have electrospun poly(vinyl alcohol)(PVA) nanofibres and PVA composite nanofibres containing multi-wall carbon nanotubes (MWNTs) (4.5 wt%), and examined the effect of the carbon nanotubes and the PVA morphology change induced by post-spinning treatments on the tensile properties, surface hydrophilicity and thermal stability of the nanofibres. Through differential scanning calorimetry (DSC) and wide-angle x-ray diffraction (WAXD) characterizations, we have observed that the presence of the carbon nanotubes nucleated crystallization of PVA in the MWNTs/PVA composite nanofibres, and hence considerably improved the fibre tensile strength. Also, the presence of carbon nanotubes in PVA reduced the fibre diameter and the surface hydrophilicity of the nanofibre mat. The MWNTs/PVA composite nanofibres and the neat PVA nanofibres responded differently to post-spinning treatments, such as soaking in methanol and crosslinking with glutaric dialdehyde, with the purpose of increasing PVA crystallinity and establishing a crosslinked PVA network, respectively. The presence of carbon nanotubes reduced the PVA crystallization rate during the methanol treatment, but prevented the decrease of crystallinity induced by the crosslinking reaction. In comparison with the crosslinking reaction, the methanol treatment resulted in better improvement in the fibre tensile strength and less reduction in the tensile strain. In addition, the presence of carbon nanotubes reduced the onset decomposition temperature of the composite nanofibres, but stabilized the thermal degradation for the post-spinning treated nanofibres. The MWNTs/PVA composite nanofibres treated by both methanol and crosslinking reaction gave the largest improvement in the fibre tensile strength, water contact angle and thermal stability

    Directional water-transfer through fabrics induced by asymmetric wettability

    Full text link
    Fabrics having an interesting unidirectional water-transfer effect have been prepared by a special coating technique to create a wettability gradient across the fabric thickness, and the treated fabrics also show considerably different breakthrough pressures on the two fabric sides
    corecore