100,204 research outputs found
Nonuniversal Effects in the Homogeneous Bose Gas
Effective field theory predicts that the leading nonuniversal effects in the
homogeneous Bose gas arise from the effective range for S-wave scattering and
from an effective three-body contact interaction. We calculate the leading
nonuniversal contributions to the energy density and condensate fraction and
compare the predictions with results from diffusion Monte Carlo calculations by
Giorgini, Boronat, and Casulleras. We give a crude determination of the
strength of the three-body contact interaction for various model potentials.
Accurate determinations could be obtained from diffusion Monte Carlo
calculations of the energy density with higher statistics.Comment: 24 pages, RevTex, 5 ps figures, included with epsf.te
TimeMachine: Timeline Generation for Knowledge-Base Entities
We present a method called TIMEMACHINE to generate a timeline of events and
relations for entities in a knowledge base. For example for an actor, such a
timeline should show the most important professional and personal milestones
and relationships such as works, awards, collaborations, and family
relationships. We develop three orthogonal timeline quality criteria that an
ideal timeline should satisfy: (1) it shows events that are relevant to the
entity; (2) it shows events that are temporally diverse, so they distribute
along the time axis, avoiding visual crowding and allowing for easy user
interaction, such as zooming in and out; and (3) it shows events that are
content diverse, so they contain many different types of events (e.g., for an
actor, it should show movies and marriages and awards, not just movies). We
present an algorithm to generate such timelines for a given time period and
screen size, based on submodular optimization and web-co-occurrence statistics
with provable performance guarantees. A series of user studies using Mechanical
Turk shows that all three quality criteria are crucial to produce quality
timelines and that our algorithm significantly outperforms various baseline and
state-of-the-art methods.Comment: To appear at ACM SIGKDD KDD'15. 12pp, 7 fig. With appendix. Demo and
other info available at http://cs.stanford.edu/~althoff/timemachine
Discovery of X-ray pulsations from "next Geminga" - PSR J1836+5925
We report the X-ray pulsation of ~173.3 ms for the "next Geminga", PSR
J1836+5925, with recent XMM-Newton investigations. The X-ray periodicity is
consistent wtih the gamma-ray ephemeris at the same epoch. The X-ray folded
light curve has a sinusoidal structure which is different from the
double-peaked gamma-ray pulse profile. We have also analysed the X-ray
phase-averaged spectra which shows the X-ray emission from PSR J1836+5925 is
thermal dominant. This suggests the X-ray pulsation mainly originates from the
modulated hot spot on the stellar surface.Comment: 7 pages, 3 figures, 1 table, accepted for publication in ApJ Lette
Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods
This article is devoted to computing the lower and upper bounds of the
Laplace eigenvalue problem. By using the special nonconforming finite elements,
i.e., enriched Crouzeix-Raviart element and extension , we get
the lower bound of the eigenvalue. Additionally, we also use conforming finite
elements to do the postprocessing to get the upper bound of the eigenvalue. The
postprocessing method need only to solve the corresponding source problems and
a small eigenvalue problem if higher order postprocessing method is
implemented. Thus, we can obtain the lower and upper bounds of the eigenvalues
simultaneously by solving eigenvalue problem only once. Some numerical results
are also presented to validate our theoretical analysis.Comment: 19 pages, 4 figure
Hyperspherical harmonics with arbitrary arguments
The derivation scheme for hyperspherical harmonics (HSH) with arbitrary
arguments is proposed. It is demonstrated that HSH can be presented as the
product of HSH corresponding to spaces with lower dimensionality multiplied by
the orthogonal (Jacobi or Gegenbauer) polynomial. The relation of HSH to
quantum few-body problems is discussed. The explicit expressions for
orthonormal HSH in spaces with dimensions from 2 to 6 are given. The important
particular cases of four- and six-dimensional spaces are analyzed in detail and
explicit expressions for HSH are given for several choices of hyperangles. In
the six-dimensional space, HSH representing the kinetic energy operator
corresponding to i) the three-body problem in physical space and ii) four-body
planar problem are derived.Comment: 18 pages, 1 figur
Long-term X-ray Variability of Ultraluminous X-ray Sources
Long-term X-ray modulations on timescales from tens to hundreds of days have
been widely studied for X-ray binaries located in the Milky Way and the
Magellanic Clouds. For other nearby galaxies, only the most luminous X-ray
sources can be monitored with dedicated observations. We here present the first
systematic study of long-term X-ray variability of four ultraluminous X-ray
sources (ESO 243-49 HLX-1, Holmberg IX X-1, M81 X-6, and NGC 5408 X-1)
monitored with Swift. By using various dynamic techniques to analyse their
light curves, we find several interesting low-frequency quasi-periodicities.
Although the periodic signals may not represent any stable orbital modulations,
these detections reveal that such long-term regular patterns may be related to
superorbital periods and structure of the accretion discs. In particular, we
show that the outburst recurrence time of ESO 243-49 HLX-1 varies over time and
suggest that it may not be the orbital period. Instead, it may be due to some
kinds of precession, and the true binary period is expected to be much shorter.Comment: 15 pages, 8 figures; accepted for publication in MNRA
Graphene microwave transistors on sapphire substrates
We have developed metal-oxide graphene field-effect transistors (MOGFETs) on
sapphire substrates working at microwave frequencies. For monolayers, we obtain
a transit frequency up to ~ 80 GHz for a gate length of 200 nm, and a power
gain maximum frequency of about ~ 3 GHz for this specific sample. Given the
strongly reduced charge noise for nanostructures on sapphire, the high
stability and high performance of this material at low temperature, our MOGFETs
on sapphire are well suited for a cryogenic broadband low-noise amplifier
Large collective Lamb shift of two distant superconducting artificial atoms
Virtual photons can mediate interaction between atoms, resulting in an energy
shift known as a collective Lamb shift. Observing the collective Lamb shift is
challenging, since it can be obscured by radiative decay and direct atom-atom
interactions. Here, we place two superconducting qubits in a transmission line
terminated by a mirror, which suppresses decay. We measure a collective Lamb
shift reaching 0.8% of the qubit transition frequency and exceeding the
transition linewidth. We also show that the qubits can interact via the
transmission line even if one of them does not decay into it.Comment: 7+5 pages, 4+2 figure
- …