229,900 research outputs found

    Doubly Exponential Solution for Randomized Load Balancing Models with General Service Times

    Full text link
    In this paper, we provide a novel and simple approach to study the supermarket model with general service times. This approach is based on the supplementary variable method used in analyzing stochastic models extensively. We organize an infinite-size system of integral-differential equations by means of the density dependent jump Markov process, and obtain a close-form solution: doubly exponential structure, for the fixed point satisfying the system of nonlinear equations, which is always a key in the study of supermarket models. The fixed point is decomposited into two groups of information under a product form: the arrival information and the service information. based on this, we indicate two important observations: the fixed point for the supermarket model is different from the tail of stationary queue length distribution for the ordinary M/G/1 queue, and the doubly exponential solution to the fixed point can extensively exist even if the service time distribution is heavy-tailed. Furthermore, we analyze the exponential convergence of the current location of the supermarket model to its fixed point, and study the Lipschitz condition in the Kurtz Theorem under general service times. Based on these analysis, one can gain a new understanding how workload probing can help in load balancing jobs with general service times such as heavy-tailed service.Comment: 40 pages, 4 figure

    Nonlinear Markov Processes in Big Networks

    Full text link
    Big networks express various large-scale networks in many practical areas such as computer networks, internet of things, cloud computation, manufacturing systems, transportation networks, and healthcare systems. This paper analyzes such big networks, and applies the mean-field theory and the nonlinear Markov processes to set up a broad class of nonlinear continuous-time block-structured Markov processes, which can be applied to deal with many practical stochastic systems. Firstly, a nonlinear Markov process is derived from a large number of interacting big networks with symmetric interactions, each of which is described as a continuous-time block-structured Markov process. Secondly, some effective algorithms are given for computing the fixed points of the nonlinear Markov process by means of the UL-type RG-factorization. Finally, the Birkhoff center, the Lyapunov functions and the relative entropy are used to analyze stability or metastability of the big network, and several interesting open problems are proposed with detailed interpretation. We believe that the results given in this paper can be useful and effective in the study of big networks.Comment: 28 pages in Special Matrices; 201
    • …
    corecore