10 research outputs found

    Normal bone density and trabecular bone score, but high serum sclerostin in congenital generalized lipodystrophy.

    No full text
    CONTEXT: Berardinelli-Seip Congenital Lipodystrophy (BSCL) is a rare autosomal recessive syndrome characterized by a difficulty in storing lipids in adipocytes, low body fat mass, hypoleptinemia, and hyperinsulinemia. Sclerostin is a product of SOST gene that blocks the Wnt/β-catenin pathway, decreasing bone formation and enhancing adipogenesis. There are no data about sclerostin in people with BSCL. OBJECTIVE: We aimed to evaluate serum sclerostin, bone mineral density (BMD), and L1-L4 Trabecular Bone Score (TBS) in BSCL patients, generating new knowledge about potential mechanisms involved in the bone alterations of these patients. DESIGN, SETTING, AND PATIENTS: In this cross-sectional study, we included 11 diabetic patients with BSCL (age 24.7±8.1years; 6 females). Sclerostin, leptin, L1-L4 TBS, BMD were measured. Potential pathophysiological mechanisms have been suggested. RESULTS: Mean serum sclerostin was elevated (44.7±13.4pmol/L) and was higher in men than women (55.3±9.0 vs. 35.1±8.4pmol/L, p=0.004). Median of serum leptin was low [0.9ng/mL (0.5-1.9)]. Seven out of 11 patients had normal BMD, while four patients had high bone mass (defined as Z-score\u3e+2.5SD). Patients on insulin had lower sclerostin (37.3±9.2 vs. 52.6±13.4pmol/L, p=0.05). The mean TBS was 1.402±0.106, and it was higher than 1.300 in nine patients. CONCLUSIONS: Patients with lipoatrophic diabetes (BSCL) have high serum concentrations of sclerostin, normal or high BMD, and reasonable trabecular bone mass measured by TBS. This is the first report of high sclerostin and good bone microarchitecture (TBS) in BSCL patients

    NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics

    No full text
    Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non-detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non-governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer-reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non-detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio-temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large-scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore