1,118 research outputs found

    Surface Superconductivity in Niobium for Superconducting RF Cavities

    Full text link
    A systematic study is presented on the superconductivity (sc) parameters of the ultrapure niobium used for the fabrication of the nine-cell 1.3 GHz cavities for the linear collider project TESLA. Cylindrical Nb samples have been subjected to the same surface treatments that are applied to the TESLA cavities: buffered chemical polishing (BCP), electrolytic polishing (EP), low-temperature bakeout (LTB). The magnetization curves and the complex magnetic susceptibility have been measured over a wide range of temperatures and dc magnetic fields, and also for di erent frequencies of the applied ac magnetic field. The bulk superconductivity parameters such as the critical temperature Tc = 9.26 K and the upper critical field Bc2(0) = 410 mT are found to be in good agreement with previous data. Evidence for surface superconductivity at fields above Bc2 is found in all samples. The critical surface field exceeds the Ginzburg-Landau field Bc3 = 1.695Bc2 by about 10% in BCP-treated samples and increases even further if EP or LTB are applied. From the field dependence of the susceptibility and a power-law analysis of the complex ac conductivity and resistivity the existence of two different phases of surface superconductivity can be established which resemble the Meissner and Abrikosov phases in the bulk: (1) coherent surface superconductivity, allowing sc shielding currents flowing around the entire cylindrical sample, for external fields B in the range between Bc2 and Bcohc3, and (2) incoherent surface superconductivity with disconnected sc domains between Bcohc3 and Bc3. The coherent critical surface field separating the two phases is found to be Bcoh c3 = 0.81Bc3 for all samples. The exponents in the power law analysis are different for BCP and EP samples, pointing to different surface topologies.Comment: 15 pages, 21 figures, DESY-Report 2004-02

    A SCRF Infrastructure for Europe

    Get PDF

    Measuring the Cosmological Geometry from the Lyman Alpha Forest along Parallel Lines of Sight

    Get PDF
    We discuss the feasibility of measuring the cosmological metric using the redshift space correlation function of the Lya forest in multiple lines of sight, as a function of angular and velocity separation. The geometric parameter that is measured is f(z) = H(z) D(z)/c, where H(z) is the Hubble constant and D(z) the angular diameter distance at redshift z. The correlation function is computed in linear theory. We describe a method to measure it from observations with the Gaussianization procedure of Croft et al (1998) to map the Lya forest transmitted flux to an approximation of the linear density field. The effect of peculiar velocities on the shape of the recovered power spectrum is pointed out. We estimate the error in recovering the f(z) factor from observations due to the variance in the Lya absorbers. We show that ~ 20 pairs of quasars (separations < 3') are needed to distinguish a flat \Omega_0=1 universe from a universe with \Omega_0=0.2, \Omega_\Lambda=0.8. A second parameter that is obtained from the correlation function of the Lya forest is \beta \simeq \Omega(z)^{0.6}/b (affecting the magnitude of the peculiar velocities), where b is a linear theory bias of the Lya forest. The statistical error of f(z) is reduced if b can be determined independently from numerical simulations, reducing the number of quasar pairs needed for constraining cosmology to approximately six. On small scales, where the correlation function is higher, f(z) should be measurable with fewer quasars, but non-linear effects must then be taken into account. The anisotropy of the non-linear redshift space correlation function as a function of scale should also provide a precise quantitative test of the gravitational instability theory of the Lya forest.Comment: submitted to Ap

    Bayesian Power Spectrum Analysis of the First-Year WMAP data

    Full text link
    We present the first results from a Bayesian analysis of the WMAP first year data using a Gibbs sampling technique. Using two independent, parallel supercomputer codes we analyze the WMAP Q, V and W bands. The analysis results in a full probabilistic description of the information the WMAP data set contains about the power spectrum and the all-sky map of the cosmic microwave background anisotropies. We present the complete probability distributions for each C_l including any non-Gaussianities of the power spectrum likelihood. While we find good overall agreement with the previously published WMAP spectrum, our analysis uncovers discrepancies in the power spectrum estimates at low l multipoles. For example we claim the best-fit Lambda-CDM model is consistent with the C_2 inferred from our combined Q+V+W analysis with a 10% probability of an even larger theoretical C_2. Based on our exact analysis we can therefore attribute the "low quadrupole issue" to a statistical fluctuation.Comment: 5 pages. 4 figures. For additional information and data see http://www.astro.uiuc.edu/~iodwyer/research#wma

    Patterns of utilization of different carbon sources by Chytridiomycota

    Get PDF
    A phylogenetically diverse set of seventeen isolates of Chytridiomycota were selected for a study of the utilization of common carbohydrates as sole carbon sources in synthetic media. Rhizophlyctis rosea AUS 13 is capable of the digestion of crystalline cellulose in the form of lens paper, filter paper and powdered filter paper and grows well with noncrystaline carboxymethyl cellulose or cellobiose, but cannot use starch or maltose as sole carbon sources in liquid and on solid media. None of the other sixteen isolates tested can digest crystalline cellulose, but all grow well on starch and maltose and several can also use cellobiose and/or sucrose as a sole carbon source. Four of the other sixteen isolates could also digest carboxymethyl cellulose slowly. Glucose is an excellent sole source of carbon in synthetic media for all seventeen isolates in the present study. In general, these data suggest variability in the ability of zoosporic true fungi to use carbohydrates other than glucose as sole sources of carbon. Four patterns of carbohydrate utilization emerged from this study of seventeen isolates. R. rosea degrades cellulose over a relatively wide pH range which suggests that the cellulase enzymes are stable over a wide pH range.Facultad de Ciencias Naturales y MuseoInstituto de Botánica "Dr. Carlos Spegazzini"Laboratorio de Investigación de Sistemas Ecológicos y Ambientale
    corecore