4,122 research outputs found
High energy constraints on Lorentz symmetry violations
Lorentz violation at high energies might lead to non linear dispersion
relations for the fundamental particles. We analyze observational constraints
on these without assuming any a priori equality between the coefficients
determining the amount of Lorentz violation for different particle species. We
focus on constraints from three high energy processes involving photons and
electrons: photon decay, photo-production of electron-positron pairs, and
vacuum Cerenkov radiation. We find that cubic momentum terms in the dispersion
relations are strongly constrained.Comment: 7 pages, 1 figure, Talk presented at CPT01; the Second Meeting on CPT
and Lorentz Symmetry, Bloomington, Indiana, 15-18 Aug. 2001. Minor numerical
error corrected, gamma-decay constraint update
Einstein Gravity as an emergent phenomenon?
In this essay we marshal evidence suggesting that Einstein gravity may be an
emergent phenomenon, one that is not ``fundamental'' but rather is an almost
automatic low-energy long-distance consequence of a wide class of theories.
Specifically, the emergence of a curved spacetime ``effective Lorentzian
geometry'' is a common generic result of linearizing a classical scalar field
theory around some non-trivial background. This explains why so many different
``analog models'' of general relativity have recently been developed based on
condensed matter physics; there is something more fundamental going on. Upon
quantizing the linearized fluctuations around this background geometry, the
one-loop effective action is guaranteed to contain a term proportional to the
Einstein--Hilbert action of general relativity, suggesting that while classical
physics is responsible for generating an ``effective geometry'', quantum
physics can be argued to induce an ``effective dynamics''. This physical
picture suggests that Einstein gravity is an emergent low-energy long-distance
phenomenon that is insensitive to the details of the high-energy short-distance
physics.Comment: 8 pages, Essay awarded an honorable mention in the year 2001 Gravity
Research Foundation essay competitio
Particle creation by moving spherical shell in the dynamical Casimir effect
The creation of massless scalar particles from the quantum vacuum by
spherical shell with time varying radius is studied. In the general case of
motion the equations are derived for the instantaneous basis expansion
coefficients. The examples are considered when the mean number of particles can
be explicitly evaluated in the adiabatic approximation.Comment: 9 pages, LaTeX, no figures, typos corrected, discussion added.
Journal-ref adde
Sonoluminescence as a QED vacuum effect: Probing Schwinger's proposal
Several years ago Schwinger proposed a physical mechanism for
sonoluminescence in terms of photon production due to changes in the properties
of the quantum-electrodynamic (QED) vacuum arising from a collapsing dielectric
bubble. This mechanism can be re-phrased in terms of the Casimir effect and has
recently been the subject of considerable controversy. The present paper probes
Schwinger's suggestion in detail: Using the sudden approximation we calculate
Bogolubov coefficients relating the QED vacuum in the presence of the expanded
bubble to that in the presence of the collapsed bubble. In this way we derive
an estimate for the spectrum and total energy emitted. We verify that in the
sudden approximation there is an efficient production of photons, and further
that the main contribution to this dynamic Casimir effect comes from a volume
term, as per Schwinger's original calculation. However, we also demonstrate
that the timescales required to implement Schwinger's original suggestion are
not physically relevant to sonoluminescence. Although Schwinger was correct in
his assertion that changes in the zero-point energy lead to photon production,
nevertheless his original model is not appropriate for sonoluminescence. In
other works (see quant-ph/9805023, quant-ph/9904013, quant-ph/9904018,
quant-ph/9905034) we have developed a variant of Schwinger's model that is
compatible with the physically required timescales.Comment: 18 pages, ReV_TeX 3.2, 9 figures. Major revisions: This document is
now limited to providing a probe of Schwinger's original suggestion for
sonoluminescence. For details on our own variant of Schwinger's ideas see
quant-ph/9805023, quant-ph/9904013, quant-ph/9904018, quant-ph/990503
March Philadephia Patriots
https://digitalcommons.library.umaine.edu/mmb-ps/2724/thumbnail.jp
Black hole entropy as T-duality invariant
We study the Euler numbers and the entropies of the non-extremal intersecting
D-branes in ten-dimensions. We use the surface gravity to constrain the
compactification radii. We correctly obtain the integer valued Euler numbers
for these radii. Moreover, the entropies are found to be invariant under the
T-duality transformation. In the extremal limit, we obtain the finite entropies
only for two intersecting D-branes. We observe that these entropies are
proportional to the product of the charges of each D-brane. We further study
the entropies of the boosted metrics. We find that their entropies can be
interpreted in term of the microscopic states of D-branes.Comment: 15 pages, Revte
Reply to "Can gravitational dynamics be obtained by diffeomorphism invariance of action?"
In a previous work we showed that, in a suitable setting, one can use
diffeomorphism invariance in order to derive gravitational field equations from
boundary terms of the gravitational action. Standing by our results we reply
here to a recent comment questioning their validity.Comment: Accepted for publication in PR
Irreducible modules over finite simple Lie conformal superalgebras of type K
We construct all finite irreducible modules over Lie conformal superalgebras
of type KComment: Accepted for publication in J. Math. Phys
Back-Reaction in Canonical Analogue Black Holes
We study the back-reaction associated with Hawking evaporation of an acoustic canonical analogue black hole in a Bose\u2013Einstein condensate. We show that the emission of Hawking radiation induces a local back-reaction on the condensate, perturbing it in the near-horizon region, and a global back-reaction in the density distribution of the atoms. We discuss how these results produce useful insights into the process of black hole evaporation and its compatibility with a unitary evolution
- …