99 research outputs found

    The state-of-the-art in personalized recommender systems for social networking

    Get PDF
    With the explosion of Web 2.0 application such as blogs, social and professional networks, and various other types of social media, the rich online information and various new sources of knowledge flood users and hence pose a great challenge in terms of information overload. It is critical to use intelligent agent software systems to assist users in finding the right information from an abundance of Web data. Recommender systems can help users deal with information overload problem efficiently by suggesting items (e.g., information and products) that match users’ personal interests. The recommender technology has been successfully employed in many applications such as recommending films, music, books, etc. The purpose of this report is to give an overview of existing technologies for building personalized recommender systems in social networking environment, to propose a research direction for addressing user profiling and cold start problems by exploiting user-generated content newly available in Web 2.0

    Twitter analysis for depression on social networks based on sentiment and stress

    Get PDF
    Detecting words that express negativity in a social media message is one step towards detecting depressive moods. To understand if a Twitter user could exhibit depression over a period of time, we applied techniques in stages to discover words that are negative in expression. Existing methods either use a single step or a data subset, whereas we applied a multi-step approach which allowed us to identify potential users and then discover the words that expressed negativity by these users. We address some Twitter specific characteristics in our research. One of which is that Twitter data can be very large, hence our desire to be able to process the data efficiently. The other is that due to its enforced character limitation, the style of writing makes interpreting and obtaining the semantic meaning of the words more challenging. Results show that the sentiment of these words can be obtained and scored efficiently as the computation on these dataset were narrowed to only these selected users. We also obtained the stress scores which correlated well with negative sentiment expressed in the content. This work shows that by first identifying users and then using methods to discover words can be a very effective technique

    Using Information Filtering in Web Data Mining Process

    Get PDF
    Web service-oriented Grid is becoming a standard for achieving loosely coupled distributed computing. Grid services could easily be specified with web-service based interfaces. In this paper we first envisage a realistic Grid market with players such as end-users, brokers and service providers participating co-operatively with an aim to meet requirements and earn profit. End-users wish to use functionality of Grid services by paying the minimum possible price or price confined within a specified budget, brokers aim to maximise profit whilst establishing a SLA (Service Level Agreement) and satisfying end-user needs and at the same time resisting the volatility of service execution time and availability. Service providers aim to develop price models based on end-user or broker demands that will maximise their profit. In this paper we focus on developing stochastic approaches to end-user workflow scheduling that provides QoS guarantees by establishing a SLA. We also develop a novel 2-stage stochastic programming technique that aims at establishing a SLA with end-users regarding satisfying their workflow QoS requirements. We develop a scheduling (workload allocation) technique based on linear programming that embeds the negotiated workflow QoS into the program and model Grid services as generalised queues. This technique is shown to outperform existing scheduling techniques that don't rely on real-time performance information

    Clustered FedStack: Intermediate Global Models with Bayesian Information Criterion

    Full text link
    Federated Learning (FL) is currently one of the most popular technologies in the field of Artificial Intelligence (AI) due to its collaborative learning and ability to preserve client privacy. However, it faces challenges such as non-identically and non-independently distributed (non-IID) and data with imbalanced labels among local clients. To address these limitations, the research community has explored various approaches such as using local model parameters, federated generative adversarial learning, and federated representation learning. In our study, we propose a novel Clustered FedStack framework based on the previously published Stacked Federated Learning (FedStack) framework. The local clients send their model predictions and output layer weights to a server, which then builds a robust global model. This global model clusters the local clients based on their output layer weights using a clustering mechanism. We adopt three clustering mechanisms, namely K-Means, Agglomerative, and Gaussian Mixture Models, into the framework and evaluate their performance. We use Bayesian Information Criterion (BIC) with the maximum likelihood function to determine the number of clusters. The Clustered FedStack models outperform baseline models with clustering mechanisms. To estimate the convergence of our proposed framework, we use Cyclical learning rates.Comment: This work has been submitted to the ELSEVIER for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow.

    Get PDF
    Since 2000, the phenology has advanced in some years and at some locations on the Qinghai-Tibetan Plateau, whereas it has been delayed in others. To understand the variations in spring vegetation growth in response to climate, we conducted both regional and experimental studies on the central Qinghai-Tibetan Plateau. We used the normalized difference vegetation index to identify correlations between climate and phenological greening, and found that greening correlated negatively with winter-spring time precipitation, but not with temperature. We used open top chambers to induce warming in an alpine meadow ecosystem from 2012 to 2014. Our results showed that in the early growing season, plant growth (represented by the net ecosystem CO2 exchange, NEE) was lower in the warmed plots than in the control plots. Late-season plant growth increased with warming relative to that under control conditions. These data suggest that the response of plant growth to warming is complex and non-intuitive in this system. Our results are consistent with the hypothesis that moisture limitation increases in early spring as temperature increases. The effects of moisture limitation on plant growth with increasing temperatures will have important ramifications for grazers in this system

    PDRL: Multi-Agent based Reinforcement Learning for Predictive Monitoring

    Full text link
    Reinforcement learning has been increasingly applied in monitoring applications because of its ability to learn from previous experiences and can make adaptive decisions. However, existing machine learning-based health monitoring applications are mostly supervised learning algorithms, trained on labels and they cannot make adaptive decisions in an uncertain complex environment. This study proposes a novel and generic system, predictive deep reinforcement learning (PDRL) with multiple RL agents in a time series forecasting environment. The proposed generic framework accommodates virtual Deep Q Network (DQN) agents to monitor predicted future states of a complex environment with a well-defined reward policy so that the agent learns existing knowledge while maximizing their rewards. In the evaluation process of the proposed framework, three DRL agents were deployed to monitor a subject's future heart rate, respiration, and temperature predicted using a BiLSTM model. With each iteration, the three agents were able to learn the associated patterns and their cumulative rewards gradually increased. It outperformed the baseline models for all three monitoring agents. The proposed PDRL framework is able to achieve state-of-the-art performance in the time series forecasting process. The proposed DRL agents and deep learning model in the PDRL framework are customized to implement the transfer learning in other forecasting applications like traffic and weather and monitor their states. The PDRL framework is able to learn the future states of the traffic and weather forecasting and the cumulative rewards are gradually increasing over each episode.Comment: This work has been submitted to the Springer for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    A multi-targeted approach to suppress tumor-promoting inflammation

    Get PDF
    Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes

    Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds

    Get PDF
    The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting

    Broad targeting of resistance to apoptosis in cancer

    Get PDF
    Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer
    corecore