2,599 research outputs found
Person Re-identification by Local Maximal Occurrence Representation and Metric Learning
Person re-identification is an important technique towards automatic search
of a person's presence in a surveillance video. Two fundamental problems are
critical for person re-identification, feature representation and metric
learning. An effective feature representation should be robust to illumination
and viewpoint changes, and a discriminant metric should be learned to match
various person images. In this paper, we propose an effective feature
representation called Local Maximal Occurrence (LOMO), and a subspace and
metric learning method called Cross-view Quadratic Discriminant Analysis
(XQDA). The LOMO feature analyzes the horizontal occurrence of local features,
and maximizes the occurrence to make a stable representation against viewpoint
changes. Besides, to handle illumination variations, we apply the Retinex
transform and a scale invariant texture operator. To learn a discriminant
metric, we propose to learn a discriminant low dimensional subspace by
cross-view quadratic discriminant analysis, and simultaneously, a QDA metric is
learned on the derived subspace. We also present a practical computation method
for XQDA, as well as its regularization. Experiments on four challenging person
re-identification databases, VIPeR, QMUL GRID, CUHK Campus, and CUHK03, show
that the proposed method improves the state-of-the-art rank-1 identification
rates by 2.2%, 4.88%, 28.91%, and 31.55% on the four databases, respectively.Comment: This paper has been accepted by CVPR 2015. For source codes and
extracted features please visit
http://www.cbsr.ia.ac.cn/users/scliao/projects/lomo_xqda
- …