14 research outputs found
Recommended from our members
Computational methodology for solubility prediction: Application to sparingly soluble organic/inorganic materials.
The solubility of a crystalline material can be estimated from the absolute free energy of the solid and the excess solvation free energy. In the earlier work, we presented a general-purpose molecular-dynamics-based methodology enabling solubility predictions of crystalline compounds, yielding accurate estimates of the aqueous solubilities of naphthalene at various pressures and temperatures. In the present work, we investigate a number of prototypical complex materials, including phenanthrene, calcite, and aragonite over a range of temperatures and pressures. Our results provide stronger evidence for the power of the methodology for universal solubility predictions.BP International Centre for Advanced Materials (BP-ICAM
Modelling the structure and interactions of intrinsically disordered peptides with multiple-replica, metadynamics-based sampling methods and force-field combinations
Intrinsically disordered proteins (IDPs) play a key role in many biological processes, including the formation of biomolecular condensates within cells. A detailed characterization of their configurational ensemble and structure-function paradigm is crucial for understanding their biological activity and for exploiting them as building blocks in material sciences. In this work, we incorporate bias-exchange metadynamics and parallel-tempering well-tempered metadynamics with CHARMM36m and CHARMM22* to explore the structural and thermodynamic characteristics of a short archetypal disordered sequence derived from a DEAD-box protein. The conformational landscapes emerging from our simulations are largely congruent across methods and forcefields. Nevertheless, differences in fine details emerge from varying forcefield/sampling method combinations. For this protein, our analysis identifies features that help to explain the low propensity of this sequence to undergo self-association in vitro, which can be common to all force-field/sampling method combinations. Overall, our work demonstrates the importance of using multiple force-field/enhanced sampling method combinations for accurate structural and thermodynamic information in the study of general disordered proteins
Nucleation of Biomolecular Condensates from Finite-Sized Simulations
The nucleation of protein condensates is a concentration-driven process of assembly. When modeled in the canonical ensemble, condensation is affected by finite-size effects. Here, we present a general and efficient route for obtaining ensemble properties of protein condensates in the macroscopic limit from finite-sized nucleation simulations. The approach is based on a theoretical description of droplet nucleation in the canonical ensemble and enables estimation of thermodynamic and kinetic parameters, such as the macroscopic equilibrium density of the dilute protein phase, the surface tension of the condensates, and nucleation free energy barriers. We apply the method to coarse-grained simulations of NDDX4 and FUS-LC, two phase-separating disordered proteins with different physicochemical characteristics. Our results show that NDDX4 condensate droplets, characterized by lower surface tension, higher solubility, and faster monomer exchange dynamics compared to those of FUS-LC, form with negligible nucleation barriers. In contrast, FUS-LC condensates form via an activated process over a wide range of concentrations
The crucial effect of early-stage gelation on the mechanical properties of cement hydrates.
Gelation and densification of calcium-silicate-hydrate take place during cement hydration. Both processes are crucial for the development of cement strength, and for the long-term evolution of concrete structures. However, the physicochemical environment evolves during cement formation, making it difficult to disentangle what factors are crucial for the mechanical properties. Here we use Monte Carlo and Molecular Dynamics simulations to study a coarse-grained model of cement formation, and investigate the equilibrium and arrested states. We can correlate the various structures with the time evolution of the interactions between the nano-hydrates during the preparation of cement. The novel emerging picture is that the changes of the physicochemical environment, which dictate the evolution of the effective interactions, specifically favour the early gel formation and its continuous densification. Our observations help us understand how cement attains its unique strength and may help in the rational design of the properties of cement and related materials.This work was supported by the SNSF (Grants No. PP00P2 126483/1 and PP00P2 150738) and George town University, by the Fundamental Research Funds for the Central Universities of P. R. China, ERC Advanced Grant 227758 (COLSTRUCTION), ITN grant 234810 (COMPLOIDS) and by EPSRC Programme Grant EP/I001352/1. KI thanks the French National Research Agency (ICoME2 Labex Project ANR-11-LABX- 0053 and A*MIDEX Project ANR-11-IDEX-0001-02) for support.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms1210
The crucial effect of early-stage gelation on the mechanical properties of cement hydrates
Gelation and densification of calcium–silicate–hydrate take place during cement hydration. Both processes are crucial for the development of cement strength, and for the long-term evolution of concrete structures. However, the physicochemical environment evolves during cement formation, making it difficult to disentangle what factors are crucial for the mechanical properties. Here we use Monte Carlo and Molecular Dynamics simulations to study a coarse-grained model of cement formation, and investigate the equilibrium and arrested states. We can correlate the various structures with the time evolution of the interactions between the nano-hydrates during the preparation of cement. The novel emerging picture is that the changes of the physicochemical environment, which dictate the evolution of the effective interactions, specifically favour the early gel formation and its continuous densification. Our observations help us understand how cement attains its unique strength and may help in the rational design of the properties of cement and related materials.Georgetown UniversityFrench Research National Agency (A*MIDEX Project ANR-11-IDEX- 0001-02)French Research National Agency (ICoME2 Labex Project ANR-11-LABX-0053
Ultrasensitive Detection of MCF-7 Cells with a Carbon Nanotube-Based Optoelectronic-Pulse Sensor Framework
Biosensors are of vital significance for healthcare by supporting the management of infectious diseases for preventing pandemics and the diagnosis of life-threatening conditions such as cancer. However, the advancement of the field can be limited by low sensing accuracy. Here, we altered the bioelectrical signatures of the cells using carbon nanotubes (CNTs) via structural loosening effects. Using an alternating current (AC) pulse under light irradiation, we developed a photo-assisted AC pulse sensor based on CNTs to differentiate between healthy breast epithelial cells (MCF-10A) and luminal breast cancer cells (MCF-7) within a heterogeneous cell population. We observed a previously undemonstrated increase in current contrast for MCF-7 cells with CNTs compared to MCF-10A cells with CNTs under light exposure. Moreover, we obtained a detection limit of ∼1.5 × 10^{3} cells below a baseline of ∼1 × 10^{4} cells for existing electrical-based sensors for an adherent, heterogeneous cell population. All-atom molecular dynamics (MD) simulations reveal that interactions between the embedded CNT and cancer cell membranes result in a less rigid lipid bilayer structure, which can facilitate CNT translocation for enhancing current. This as-yet unconsidered cancer cell-specific method based on the unique optoelectrical properties of CNTs represents a strategy for unlocking the detection of a small population of cancer cells and provides a promising route for the early diagnosis, monitoring, and staging of cancer
Modeling the Structure and Interactions of Intrinsically Disordered Peptides with Multiple Replica, Metadynamics-Based Sampling Methods and Force-Field Combinations
Intrinsically disordered proteins play a key role in many biological processes, including the formation of biomolecular condensates within cells. A detailed characterization of their configurational ensemble and structure-function paradigm is crucial for understanding their biological activity and for exploiting them as building blocks in material sciences. In this work, we incorporate bias-exchange metadynamics and parallel-tempering well-tempered metadynamics with CHARMM36m and CHARMM22* to explore the structural and thermodynamic characteristics of a short archetypal disordered sequence derived from a DEAD-box protein. The conformational landscapes emerging from our simulations are largely congruent across methods and force fields. Nevertheless, differences in fine details emerge from varying combinations of force-fields and sampling methods. For this protein, our analysis identifies features that help to explain the low propensity of this sequence to undergo self-association in vitro, which are common to all force-field/sampling method combinations. Overall, our work demonstrates the importance of using multiple force-field and sampling method combinations for accurate structural and thermodynamic information in the study of disordered proteins
Modelling the structure and interactions of intrinsically disordered proteins with multiple-replica, metadynamics-based sampling methods and force-field combinations
Intrinsically disordered proteins (IDPs) play a key role in many biological processes, including the formation of biomolecular condensates within cells. A detailed characterization of their configurational ensemble and structure-function paradigm is crucial for understanding their biological activity and for exploiting them as building blocks in material sciences. In this work, we incorporate bias-exchange metadynamics and parallel-tempering well-tempered metadynamics with CHARMM36m and CHARMM22* to explore the structural and thermodynamic characteristics of a short archetypal disordered sequence derived from a DEAD-box protein. The conformational landscapes emerging from our simulations are largely congruent across methods and forcefields. Nevertheless, differences in fine details emerge from varying forcefield/sampling method combinations. For this protein, our analysis identifies features that help to explain the low propensity of this sequence to undergo self-association in vitro, which can be common to all force-field/sampling method combinations. Overall, our work demonstrates the importance of using multiple force-field/enhanced sampling method combinations for accurate structural and thermodynamic information in the study of general disordered proteins
Modeling the Structure and Interactions of Intrinsically Disordered Peptides with Multiple Replica, Metadynamics-Based Sampling Methods and Force-Field Combinations
Intrinsically disordered proteins play a key role in many biological processes, including the formation of biomolecular condensates within cells. A detailed characterization of their configurational ensemble and structure-function paradigm is crucial for understanding their biological activity and for exploiting them as building blocks in material sciences. In this work, we incorporate bias-exchange metadynamics and parallel-tempering well-tempered metadynamics with CHARMM36m and CHARMM22∗ to explore the structural and thermodynamic characteristics of a short archetypal disordered sequence derived from a DEAD-box protein. The conformational landscapes emerging from our simulations are largely congruent across methods and force fields. Nevertheless, differences in fine details emerge from varying combinations of force-fields and sampling methods. For this protein, our analysis identifies features that help to explain the low propensity of this sequence to undergo self-association in vitro, which are common to all force-field/sampling method combinations. Overall, our work demonstrates the importance of using multiple force-field and sampling method combinations for accurate structural and thermodynamic information in the study of disordered proteins.ISSN:1549-9618ISSN:1549-962