1,354 research outputs found

    Declining risk of sudden death in heart failure

    Get PDF
    No abstract available

    A re-examination of the BEST Trial using composite outcomes, including emergency department visits

    Get PDF
    Objectives: The influence of choice of endpoint on trial size, duration, and interpretation of results was examined in patients with heart failure who were enrolled in BEST (Beta-blocker Evaluation of Survival Trial). Background: The choice of endpoints in heart failure trials has evolved over the past 3 decades. Methods: In the BEST trial, we used Cox regression analysis to examine the effect of bucindolol on the current standard composite of cardiovascular death or heart failure hospitalization (CVD/HFH) compared with the original primary mortality endpoint and the expanded composite that included emergency department (ED) visits. We also undertook an analysis of recurrent events primarily using the Lin, Wei, Ying, and Yang model. Results: Overall, 448 (33%) patients on placebo and 411 (30%) patients on bucindolol died (hazard ratio [HR]: 0.90; 95% confidence interval [CI]: 0.78 to 1.02; p = 0.11). A total of 730 (54%) patients experienced CVD/HFH on placebo and 624 (46%) on bucindolol (HR: 0.80; 95% CI: 0.72 to 0.89; p < 0.001). Adding ED visits increased these numbers to 768 (57%) and 668 (49%), respectively (HR: 0.81; 95% CI: 0.73 to 0.90; p < 0.001). A total of 568 (42%) patients on placebo experienced HFH compared with 476 (35%) patients on bucindolol (HR: 0.78; 95% CI: 0.69 to 0.89; p < 0.001), with a total of 1,333 and 1,124 admissions, respectively. With the same statistical assumptions, using the composite endpoint instead of all-cause mortality would have reduced the trial size by 40% and follow-up duration by 69%. The rate ratio for recurrent events (CVD/HFH) was 0.83 (95% CI: 0.73 to 0.94; p = 0.003). Conclusions: Choice of endpoint has major implications for trial size and duration, as well as interpretation of results. The value of broader composite endpoints and inclusion of recurrent events needs further investigation. (Beta Blocker Evaluation in Survival Trial [BEST]; NCT00000560

    Simplifying the mosaic description of DNA sequences

    Get PDF
    By using the Jensen-Shannon divergence, genomic DNA can be divided into compositionally distinct domains through a standard recursive segmentation procedure. Each domain, while significantly different from its neighbours, may however share compositional similarity with one or more distant (non--neighbouring) domains. We thus obtain a coarse--grained description of the given DNA string in terms of a smaller set of distinct domain labels. This yields a minimal domain description of a given DNA sequence, significantly reducing its organizational complexity. This procedure gives a new means of evaluating genomic complexity as one examines organisms ranging from bacteria to human. The mosaic organization of DNA sequences could have originated from the insertion of fragments of one genome (the parasite) inside another (the host), and we present numerical experiments that are suggestive of this scenario.Comment: 16 pages, 1 figure, Accepted for publication in Phys. Rev.

    Cosmological models with linearly varying deceleration parameter

    Full text link
    We propose a new law for the deceleration parameter that varies linearly with time and covers Berman's law where it is constant. Our law not only allows one to generalize many exact solutions that were obtained assuming constant deceleration parameter, but also gives a better fit with data (from SNIa, BAO and CMB), particularly concerning the late time behavior of the universe. According to our law only the spatially closed and flat universes are allowed; in both cases the cosmological fluid we obtain exhibits quintom like behavior and the universe ends with a big-rip. This is a result consistent with recent cosmological observations.Comment: 12 pages, 7 figures; some typo corrections; to appear in International Journal of Theoretical Physic

    A Comparison of the LVDP and {\Lambda}CDM Cosmological Models

    Full text link
    We compare the cosmological kinematics obtained via our law of linearly varying deceleration parameter (LVDP) with the kinematics obtained in the {\Lambda}CDM model. We show that the LVDP model is almost indistinguishable from the {\Lambda}CDM model up to the near future of our universe as far as the current observations are concerned, though their predictions differ tremendously into the far future.Comment: 6 pages, 5 figures, 1 table, matches the version to be published in International Journal of Theoretical Physic

    Modeling water waves beyond perturbations

    Get PDF
    In this chapter, we illustrate the advantage of variational principles for modeling water waves from an elementary practical viewpoint. The method is based on a `relaxed' variational principle, i.e., on a Lagrangian involving as many variables as possible, and imposing some suitable subordinate constraints. This approach allows the construction of approximations without necessarily relying on a small parameter. This is illustrated via simple examples, namely the Serre equations in shallow water, a generalization of the Klein-Gordon equation in deep water and how to unify these equations in arbitrary depth. The chapter ends with a discussion and caution on how this approach should be used in practice.Comment: 15 pages, 1 figure, 39 references. This document is a contributed chapter to an upcoming volume to be published by Springer in Lecture Notes in Physics Series. Other author's papers can be downloaded at http://www.denys-dutykh.com

    Longitudinal metabolic and gut bacterial profiling of pregnant women with previous bariatric surgery

    Get PDF
    Objective Due to the global increase in obesity rates and success of bariatric surgery in weight reduction, an increasing number of women now present pregnant with a previous bariatric procedure. This study investigates the extent of bariatric-associated metabolic and gut microbial alterations during pregnancy and their impact on fetal development. Design A parallel metabonomic (molecular phenotyping based on proton nuclear magnetic resonance spectroscopy) and gut bacterial (16S ribosomal RNA gene amplicon sequencing) profiling approach was used to determine maternal longitudinal phenotypes associated with malabsorptive/mixed (n=25) or restrictive (n=16) procedures, compared with women with similar early pregnancy body mass index but without bariatric surgery (n=70). Metabolic profiles of offspring at birth were also analysed. Results Previous malabsorptive, but not restrictive, procedures induced significant changes in maternal metabolic pathways involving branched-chain and aromatic amino acids with decreased circulation of leucine, isoleucine and isobutyrate, increased excretion of microbial-associated metabolites of protein putrefaction (phenylacetlyglutamine, p-cresol sulfate, indoxyl sulfate and p-hydroxyphenylacetate), and a shift in the gut microbiota. The urinary concentration of phenylacetylglutamine was significantly elevated in malabsorptive patients relative to controls (p=0.001) and was also elevated in urine of neonates born from these mothers (p=0.021). Furthermore, the maternal metabolic changes induced by malabsorptive surgery were associated with reduced maternal insulin resistance and fetal/birth weight. Conclusion Metabolism is altered in pregnant women with a previous malabsorptive bariatric surgery. These alterations may be beneficial for maternal outcomes, but the effect of elevated levels of phenolic and indolic compounds on fetal and infant health should be investigated further

    Earthquake Forecast via Neutrino Tomography

    Full text link
    We discuss the possibility of forecasting earthquakes by means of (anti)neutrino tomography. Antineutrinos emitted from reactors are used as a probe. As the antineutrinos traverse through a region prone to earthquakes, observable variations in the matter effect on the antineutrino oscillation would provide a tomography of the vicinity of the region. In this preliminary work, we adopt a simplified model for the geometrical profile and matter density in a fault zone. We calculate the survival probability of electron antineutrinos for cases without and with an anomalous accumulation of electrons which can be considered as a clear signal of the coming earthquake, at the geological region with a fault zone, and find that the variation may reach as much as 3% for νˉe\bar \nu_e emitted from a reactor. The case for a νe\nu_e beam from a neutrino factory is also investigated, and it is noted that, because of the typically high energy associated with such neutrinos, the oscillation length is too large and the resultant variation is not practically observable. Our conclusion is that with the present reactor facilities and detection techniques, it is still a difficult task to make an earthquake forecast using such a scheme, though it seems to be possible from a theoretical point of view while ignoring some uncertainties. However, with the development of the geology, especially the knowledge about the fault zone, and with the improvement of the detection techniques, etc., there is hope that a medium-term earthquake forecast would be feasible.Comment: 6 pages, 4 figures, 1 tabl

    Dynamics near the Surface Reconstruction of W(100)

    Full text link
    Using Brownian molecular dynamics simulation, we study the surface dynamics near the reconstruction transition of W(100) via a model Hamiltonian. Results for the softening and broadening of the surface phonon spectrum near the transition are compared with previous calculations and with He atom scattering data. From the critical behavior of the central peak in the dynamical structure factor, we also estimate the exponent of the power law anomaly for adatom diffusion near the transition temperature.Comment: 8 pages, 8 figures, to appear in Phys. Rev.

    Contemporary characteristics and outcomes in chagasic heart failure compared with other nonischemic and ischemic cardiomyopathy

    Get PDF
    Background: Chagas’ disease is an important cause of cardiomyopathy in Latin America. We aimed to compare clinical characteristics and outcomes in patients with heart failure (HF) with reduced ejection fraction caused by Chagas’ disease, with other etiologies, in the era of modern HF therapies. Methods and Results: This study included 2552 Latin American patients randomized in the PARADIGM-HF (Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure) and ATMOSPHERE (Aliskiren Trial to Minimize Outcomes in Patients With Heart Failure) trials. The investigator-reported etiology was categorized as Chagasic, other nonischemic, or ischemic cardiomyopathy. The outcomes of interest included the composite of cardiovascular death or HF hospitalization and its components and death from any cause. Unadjusted and adjusted Cox proportional hazards models were performed to compare outcomes by pathogenesis. There were 195 patients with Chagasic HF with reduced ejection fraction, 1300 with other nonischemic cardiomyopathy, and 1057 with ischemic cardiomyopathy. Compared with other etiologies, Chagasic patients were more often female, younger, and had lower prevalence of hypertension, diabetes mellitus, and renal impairment (but had higher prevalence of stroke and pacemaker implantation) and had worse health-related quality of life. The rates of the composite outcome were 17.2, 12.5, and 11.4 per 100 person-years for Chagasic, other nonischemic, and ischemic patients, respectively—adjusted hazard ratio for Chagasic versus other nonischemic: 1.49 (95% confidence interval, 1.15–1.94; P=0.003) and Chagasic versus ischemic: 1.55 (1.18–2.04; P=0.002). The rates of all-cause mortality were also higher. Conclusions: Despite younger age, less comorbidity, and comprehensive use of conventional HF therapies, patients with Chagasic HF with reduced ejection fraction continue to have worse quality of life and higher hospitalization and mortality rates compared with other etiologies. Clinical Trial Registration: PARADIGM-HF: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01035255; ATMOSPHERE: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00853658
    • …
    corecore