303 research outputs found

    How to Understand LMMSE Transceiver Design for MIMO Systems From Quadratic Matrix Programming

    Full text link
    In this paper, a unified linear minimum mean-square-error (LMMSE) transceiver design framework is investigated, which is suitable for a wide range of wireless systems. The unified design is based on an elegant and powerful mathematical programming technology termed as quadratic matrix programming (QMP). Based on QMP it can be observed that for different wireless systems, there are certain common characteristics which can be exploited to design LMMSE transceivers e.g., the quadratic forms. It is also discovered that evolving from a point-to-point MIMO system to various advanced wireless systems such as multi-cell coordinated systems, multi-user MIMO systems, MIMO cognitive radio systems, amplify-and-forward MIMO relaying systems and so on, the quadratic nature is always kept and the LMMSE transceiver designs can always be carried out via iteratively solving a number of QMP problems. A comprehensive framework on how to solve QMP problems is also given. The work presented in this paper is likely to be the first shoot for the transceiver design for the future ever-changing wireless systems.Comment: 31 pages, 4 figures, Accepted by IET Communication

    Adaptive Multi-objective Optimization for Energy Efficient Interference Coordination in Multi-Cell Networks

    Full text link
    In this paper, we investigate the distributed power allocation for multi-cell OFDMA networks taking both energy efficiency and inter-cell interference (ICI) mitigation into account. A performance metric termed as throughput contribution is exploited to measure how ICI is effectively coordinated. To achieve a distributed power allocation scheme for each base station (BS), the throughput contribution of each BS to the network is first given based on a pricing mechanism. Different from existing works, a biobjective problem is formulated based on multi-objective optimization theory, which aims at maximizing the throughput contribution of the BS to the network and minimizing its total power consumption at the same time. Using the method of Pascoletti and Serafini scalarization, the relationship between the varying parameters and minimal solutions is revealed. Furthermore, to exploit the relationship an algorithm is proposed based on which all the solutions on the boundary of the efficient set can be achieved by adaptively adjusting the involved parameters. With the obtained solution set, the decision maker has more choices on power allocation schemes in terms of both energy consumption and throughput. Finally, the performance of the algorithm is assessed by the simulation results.Comment: 29 page

    Serotype-specific replicating AAV helper constructs increase recombinant AAV type 2 vector production

    Get PDF
    One of the major limitations of the use of adeno-associated virus (AAV) as a tool for gene therapy is the difficulty in providing sufficient quantities of the virus for pre-clinical and clinical trials. Here, we report a novel approach for amplifying AAV helper functions, which mimics the normal replication of wild type (wt) AAV resulting in a high yield of AAV vectors. Cotransfection of replicating but non-packaging AAV helper constructs in the presence of adenovirus (Ad) produces a high level of Rep and Cap proteins. Yield of AAV2/GFP vector obtained from this helper DNA replication system was approximately 20-fold higher than traditional methods. Molecular analysis suggested that virus yield was associated with capsid protein production. The transfection ratio was optimized using these novel helper constructs, resulting in an additional 2-fold increase in vector yield without presence of replication competent AAV (rcAAV). This strategy supports development of AAV packaging systems that retain normal virus replication capability without helper virus encapsidation
    • …
    corecore