21,597 research outputs found

    Efficient variational quantum simulator incorporating active error minimisation

    Full text link
    One of the key applications for quantum computers will be the simulation of other quantum systems that arise in chemistry, materials science, etc, in order to accelerate the process of discovery. It is important to ask: Can this be achieved using near future quantum processors, of modest size and under imperfect control, or must it await the more distant era of large-scale fault-tolerant quantum computing? Here we propose a variational method involving closely integrated classical and quantum coprocessors. We presume that all operations in the quantum coprocessor are prone to error. The impact of such errors is minimised by boosting them artificially and then extrapolating to the zero-error case. In comparison to a more conventional optimised Trotterisation technique, we find that our protocol is efficient and appears to be fundamentally more robust against error accumulation.Comment: 13 pages, 5 figures; typos fixed and small update

    Hierarchical surface code for network quantum computing with modules of arbitrary size

    Full text link
    The network paradigm for quantum computing involves interconnecting many modules to form a scalable machine. Typically it is assumed that the links between modules are prone to noise while operations within modules have significantly higher fidelity. To optimise fault tolerance in such architectures we introduce a hierarchical generalisation of the surface code: a small `patch' of the code exists within each module, and constitutes a single effective qubit of the logic-level surface code. Errors primarily occur in a two-dimensional subspace, i.e. patch perimeters extruded over time, and the resulting noise threshold for inter-module links can exceed ~ 10% even in the absence of purification. Increasing the number of qubits within each module decreases the number of qubits necessary for encoding a logical qubit. But this advantage is relatively modest, and broadly speaking a `fine grained' network of small modules containing only ~ 8 qubits is competitive in total qubit count versus a `course' network with modules containing many hundreds of qubits.Comment: 12 pages, 11 figure

    A Quasi-Bayesian Perspective to Online Clustering

    Get PDF
    When faced with high frequency streams of data, clustering raises theoretical and algorithmic pitfalls. We introduce a new and adaptive online clustering algorithm relying on a quasi-Bayesian approach, with a dynamic (i.e., time-dependent) estimation of the (unknown and changing) number of clusters. We prove that our approach is supported by minimax regret bounds. We also provide an RJMCMC-flavored implementation (called PACBO, see https://cran.r-project.org/web/packages/PACBO/index.html) for which we give a convergence guarantee. Finally, numerical experiments illustrate the potential of our procedure

    Stabilisers as a design tool for new forms of Lechner-Hauke-Zoller Annealer

    Full text link
    In a recent paper Lechner, Hauke and Zoller (LHZ) described a means to translate a Hamiltonian of NN spin-12\frac{1}{2} particles with 'all-to-all' interactions into a larger physical lattice with only on-site energies and local parity constraints. LHZ used this mapping to propose a novel form of quantum annealing. Here we provide a stabiliser-based formulation within which we can describe both this prior approach and a wide variety of variants. Examples include a triangular array supporting all-to-all connectivity, and moreover arrangements requiring only 2N2N or NlogNN\log N spins but providing interesting bespoke connectivities. Further examples show that arbitrarily high order logical terms can be efficiently realised, even in a strictly 2D layout. Our stabilisers can correspond to either even-parity constraints, as in the LHZ proposal, or as odd-parity constraints. Considering the latter option applied to the original LHZ layout, we note it may simplify the physical realisation since the required ancillas are only spin-12\frac{1}{2} systems (i.e. qubits, rather than qutrits) and moreover the interactions are very simple. We make a preliminary assessment of the impact of this design choices by simulating small (few-qubit) systems; we find some indications that the new variant may maintain a larger minimum energy gap during the annealing process.Comment: A dramatically expanded revision: we now show how to use our stabiliser formulation to construct a wide variety of new physical layouts, including ones with fewer than Order N^2 spins but custom connectivities, and a means to achieve higher order coupling even in 2

    High threshold distributed quantum computing with three-qubit nodes

    Full text link
    In the distributed quantum computing paradigm, well-controlled few-qubit `nodes' are networked together by connections which are relatively noisy and failure prone. A practical scheme must offer high tolerance to errors while requiring only simple (i.e. few-qubit) nodes. Here we show that relatively modest, three-qubit nodes can support advanced purification techniques and so offer robust scalability: the infidelity in the entanglement channel may be permitted to approach 10% if the infidelity in local operations is of order 0.1%. Our tolerance of network noise is therefore a order of magnitude beyond prior schemes, and our architecture remains robust even in the presence of considerable decoherence rates (memory errors). We compare the performance with that of schemes involving nodes of lower and higher complexity. Ion traps, and NV- centres in diamond, are two highly relevant emerging technologies.Comment: 5 figures, 12 pages in single column format. Revision has more detailed comparison with prior scheme
    corecore