146 research outputs found

    Extended paraconductivity regime in underdoped cuprates

    Full text link
    We reconsider transport experiments in strongly anisotropic superconducting cuprates and we find that universal Aslamazov-Larkin (AL) paraconductivity in two dimensions is surprisingly robust even in the underdoped regime below the pseudogap crossover temperature T^*. We also establish that the underlying normal state resistivity in the pseudogap phase is (almost) linear in temperature, with all the deviations being quantitatively accounted by AL paraconductivity. The disappearence of paraconductivity is governed by the disappearence of gaussian pair fluctuations at an energy scale related to T^*.Comment: 5 pages and 2 figure

    BaCu3O4: High Temperature Magnetic Order in One-Dimensional S=1/2 Diamond-Chains

    Full text link
    The magnetic properties of the alkaline earth oxocuprate BaCu3O4 are investigated. We show that the characteristic Cu3O4 layers of this material can be described with diamond chains of antiferromagnetically coupled Cu 1/2 spins with only a weak coupling between two adjacent chains. These Cu3O4 layers seem to represent a so far unique system of weakly coupled one-dimensional magnetic objects where the local AF ordering of the Cu2+ ions leads to an actual net magnetic moment of an isolated diamond chain. We demonstrate a magnetic transition at a high N\'eel temperature T_{N}=336 K

    Doping-dependent competition between superconductivity and polycrystalline charge density waves

    Get PDF
    From systematic analysis of the high pulsed magnetic field resistance data of La2−x_{2-x}Srx_xCuO4_{4} thin films, we extract an experimental phase diagram for several doping values ranging from the very underdoped to the very overdoped regimes. Our analysis highlights a competition between charge density waves and superconductivity which is ubiquitous between x=0.08x=0.08 and x=0.19x=0.19 and produces the previously observed double step transition. When suppressed by a strong magnetic field, superconductivity is resilient for two specific doping ranges centered around respectively x≈0.09x\approx 0.09 and x≈0.19x\approx 0.19 and the characteristic temperature for the onset of the competing charge density wave phase is found to vanish above x=0.19x = 0.19. At x=1/8x=1/8 the two phases are found to coexist exactly at zero magnetic field.Comment: 13 figures. Changes from previous version are in red. A few clarifications and a discussion about the different materials were added together with additional reference

    Confinement of superconducting fluctuations due to emergent electronic inhomogeneities

    Full text link
    The microscopic nature of an insulating state in the vicinity of a superconducting state, in the presence of disorder, is a hotly debated question. While the simplest scenario proposes that Coulomb interactions destroy the Cooper pairs at the transition, leading to localization of single electrons, an alternate possibility supported by experimental observations suggests that Cooper pairs instead directly localize. The question of the homogeneity, granularity, or possibly glassiness of the material on the verge of this transition is intimately related to this fundamental issue. Here, by combining macroscopic and nano-scale studies of superconducting ultrathin NbN films, we reveal nanoscopic electronic inhomogeneities that emerge when the film thickness is reduced. In addition, while thicker films display a purely two-dimensional behaviour in the superconducting fluctuations, we demonstrate a zero-dimensional regime for the thinner samples precisely on the scale of the inhomogeneities. Such behavior is somehow intermediate between the Fermi and Bose insulator paradigms and calls for further investigation to understand the way Cooper pairs continuously evolve from a bound state of fermionic objects into localized bosonic entities.Comment: 29 pages 9 figure

    Phase Separation and the Phase Diagram in Cuprates Superconductors

    Full text link
    We show that the main features of the cuprates superconductors phase diagram can be derived considering the disorder as a key property of these materials. Our basic point is that the high pseudogap line is an onset of phase separation which generates compounds made up of regions with distinct doping levels. We calculate how this continuous temperature dependent phase separation process occurs in high critical temperature superconductors (HTSC) using the Cahn-Hilliard approach, originally applied to study alloys. Since the level of phase separation varies for different cuprates, it is possible that different systems with average doping level pm exhibit different degrees of charge and spin segregation. Calculations on inhomogeneous charge distributions in form of stripes in finite clusters performed by the Bogoliubov-deGennes superconducting approach yield good agreement to the pseudogap temperature T*(pm), the onset of local pairing amplitudes with phase locked and concomitantly, how they develop at low temperatures into the superconducting phase at Tc(pm) by percolation.Comment: 9 pages, 9 figures. Submitted to Phys. Rev.

    Protected superconductivity at the boundaries of charge-density-wave domains

    Get PDF
    Solid 4He may acquire superfluid characteristics due to the frustration of the solid phase at grain boundaries. Here, introducing a negative-U generalized Hubbard model and a coarse-grained semiclassical pseudospin model, we show that an analogous effect occurs in systems with competition among charge-density-waves (CDW) and superconductivity in the presence of disorder, as cuprate or dichalcogenide superconductors. The CDW breaks apart in domains with topologically protected filamentary superconductivity at the interfaces. Our transport measurements, carried out in underdoped La2-x Sr x CuO4, with the magnetic field acting as a control parameter, are shown to be in excellent agreement with our theoretical prediction. Assuming superconductivity and CDW phases have similar energies, at intermediate temperatures, the magnetic field drives the system from a fluctuating superconductor to a CDW as expected in the clean limit. Lowering the temperature, the expected clean quantum critical point is avoided and a filamentary phase appears, analogous to 'glassy' supersolid phenomena in 4He. The transition line ends at a second quantum critical point at high-fields. Within our scenario, the filamentary superconducting phase is parasitic with CDW and bulk superconducting phases playing the role of primary competing order parameters
    • 

    corecore