1,865 research outputs found

    Diffusive electron acceleration at SNR shock fronts and the observed SNR radio spectral indices

    Get PDF
    The radio synchrotron emission from relativistic electrons in shell supernova remnants (SNRs) provides a unique opportunity to probe the energy distribution of energetic electrons at their acceleration site (SNR shock fronts). This information provides insight into the acceleration mechanism(s). The implications of these observations for the diffusive (first-order Fermi) acceleration of electrons at the SNR shock fronts are discussed

    Analytical view of diffusive and convective cosmic ray transport in elliptical galaxies

    Full text link
    Context: An analytical solution of the generalized diffusive and convective transport equation is derived to explain the transport of cosmic ray protons within elliptical galaxies. Aims: Cosmic ray transport within elliptical galaxies is an interesting element in understanding the origin of high energetic particles measured on Earth. As probable sources of those high energetic particles, elliptical galaxies show a dense interstellar medium as a consequence of activity in the galactic nucleus or merging events between galaxies. Thus it is necessary for an appropriate description of cosmic ray transport to take the diffusive and convective processes in a dense interstellar environment into account. Here we show that the transport equations can be solved analytically with respect to the given geometry and boundary conditions in position space, as well as in momentum space. Results: The spatial solution is shown using a generalized source of cosmic rays. Additionally, the special case of a jet-like source is illustrated. We present the solution in momentum space with respect to an escape term for cosmic ray protons depending on the spatial shape of the galaxy. For a delta-shape injection function, the momentum solution is obtained analytically. We find that the spectral index measured on Earth can be obtained by appropriately choosing of the strength of Fermi I and Fermi II processes. From these results we calculate the gamma-ray flux from pion decay due to proton-proton interaction to give connection to observations. Additionally we determine the escape-spectrum of cosmic rays. The results show that both spectra are harder than the intrinsic power-law spectrum for cosmic rays in elliptical galaxies.Comment: 23 pages, 7 figures, accepted for publication in A&

    New Symmetries of Supersymmetric Effective Lagrangians

    Get PDF
    We consider the structure of effective lagrangians describing the low-energy dynamics of supersymmetric theories in which a global symmetry GG is spontaneously broken to a subgroup HH while supersymmetry is unbroken. In accordance with the supersymmetric Goldstone theorem, these lagrangians contain Nambu--Goldstone superfields associated with a coset space Gc/H^G^c / \hat{H}, where GcG^c is the complexification of GG and H^\hat{H} is the largest subgroup of GcG^c that leaves the order parameter invariant. The lagrangian may also contain additional light matter fields. To analyze the effective lagrangian for the matter fields, we first consider the case where the effective lagrangian is obtained by integrating out heavy modes at weak coupling (but including non-perturbative effects such as instantons). We show that the superpotential of the matter fields is H^\hat{H} invariant, which can give rise to non-trivial relations among independent HH-invariants in the superpotential. We also show that the Kahler potential of the matter fields can be restricted by a remnant of H^\hat{H} symmetry. These results are non-perturbative and have a simple group-theoretic interpretation. When we relax the weak-coupling constraint, there appear to be additional possibilities for the action of H^\hat{H} on the matter fields, hinting that the constraints imposed by H^\hat{H} may be even richer in strongly coupled theories.Comment: 23 pages, plain Te

    Heterotic/type I duality, D-instantons and an N=2 AdS/CFT correspondence

    Get PDF
    D-instanton effects are studied for the IIB orientifold T^2/I\Omega(-1)^{F_L} of Sen using type I/heterotic duality. An exact one loop threshold calculation of t_8 \tr F^4 and t_8(\tr F^2)^2 terms for the heterotic string on T^2 with Wilson lines breaking SO(32) to SO(8)^4 is related to D-instanton induced terms in the worldvolume of D7 branes in the orientifold. Introducing D3 branes and using the AdS/CFT correspondence in this case, these terms are used to calculate Yang-Mills instanton contributions to four point functions of the large N_c limit of N=2 USp(2N_c) SYM with four fundamental and one antisymmetric tensor hypermultiplets.Comment: 25 pages, harvmac(b), one figure, v2: minor changes, version to appear in PR

    Orientifolds, Unoriented Instantons and Localization

    Full text link
    We consider world-sheet instanton effects in N=1 string orientifolds of noncompact toric Calabi-Yau threefolds. We show that unoriented closed string topological amplitudes can be exactly computed using localization techniques for holomorphic maps with involution. Our results are in precise agreement with mirror symmetry and large N duality predictions.Comment: 25 pages, 10 figures, published version; v4: typos correcte

    Ion cyclotron resonance heating scenarios for DEMO

    Get PDF
    International audienceThe present paper offers an overview of the potential of ion cyclotron resonance heating (ICRH) or radio frequency (RF) heating for the DEMO machine. It is found that various suitable heating schemes are available. Similar to ITER and in view of the limited bandwidth of about 10M Hz that can be achieved to ensure optimal functioning of the launcher, it is proposed to make core second harmonic tritium heating the key ion heating scheme, assisted by fundamental cyclotron heating 3 He in the early phase of the discharge; for the present design of DEMO-with a static magnetic field strength of B o = 5.855T-that places the T and 3 He layers in the core for f = 60M Hz and suggests to center the bandwidth around that main operating frequency. In line with earlier studies for hot, dense plasmas in large-size magnetic confinement machines it is shown that good single pass absorption is achieved but that the size as well as operating density and temperature of the machine cause the electrons to absorb a non-negligible fraction of the power away from the core when core ion heating is aimed at. Current drive and alternative heating options are briefly discussed and a dedicated computation is done for the traveling wave antenna, proposed for DEMO in view of its compatibility with substantial antenna-plasma distances. The various tasks that ICRH can fulfill are briefly listed. Finally, the impact of transport and the sensitivity of the obtained results to changes in the machine parameters is commented on

    A Note on Computations of D-brane Superpotential

    Full text link
    We develop some computational methods for the integrals over the 3-chains on the compact Calabi-Yau 3-folds that plays a prominent role in the analysis of the topological B-model in the context of the open mirror symmetry. We discuss such 3-chain integrals in two approaches. In the first approach, we provide a systematic algorithm to obtain the inhomogeneous Picard-Fuchs equations. In the second approach, we discuss the analytic continuation of the period integral to compute the 3-chain integral directly. The latter direct integration method is applicable for both on-shell and off-shell formalisms.Comment: 61 pages, 5 figures; v2: typos corrected, minor changes, references adde

    On the Zero-Slope Limit of the Compactified Closed Bosonic String

    Full text link
    In the framework of the compactified closed bosonic string theory with the extra spatial coordinates being circular with radius RR, we perform both the zero-slope limit and the R→0R \rightarrow 0 limit of the tree scattering amplitude of four massless scalar particles. We explicitly show that this double limit leads to amplitudes involving scalars which interact through the exchange of a scalar, spin 1 and spin 2 particle. In particular, this latter case reproduces the same result obtained in linearized quantum gravity.Comment: 10 pages, LaTex file, DSF-T-43/9

    Orientifolds and twisted boundary conditions

    Get PDF
    It is argued that the T-dual of a crosscap is a combination of an O+ and an O- orientifold plane. Various theories with crosscaps and D-branes are interpreted as gauge-theories on tori obeying twisted boundary conditions. Their duals live on orientifolds where the various orientifold planes are of different types. We derive how to read off the holonomies from the positions of D-branes in the orientifold background. As an application we reconstruct some results from a paper by Borel, Friedman and Morgan for gauge theories with classical groups, compactified on a 2-- or 3--torus with twisted boundary conditions.Comment: 23 pages, LaTeX, 2 eps figures; minor corrections, references adde
    • …
    corecore