38 research outputs found

    Far field subwavelength imaging and focusing using a wire medium based resonant metalens

    Full text link
    This is the second article in a series of two dealing with the concept of "resonant metalens" we introduced recently [Phys. Rev. Lett. 104, 203901 (2010)]. It is a new type of lens capable of coding in time and radiating efficiently in the far field region sub-diffraction information of an object. A proof of concept of such a lens is performed in the microwave range, using a medium made out of a square lattice of parallel conducting wires with finite length. We investigate a sub-wavelength focusing scheme with time reversal and demonstrate experimentally spots with focal widths of {\lambda}/25. Through a cross-correlation based imaging procedure we show an image reconstruction with a resolution of {\lambda}/80. Eventually we discuss the limitations of such a lens which reside essentially in losses

    Resonant Metalenses for Breaking the Diffraction Barrier

    Full text link
    We introduce the resonant metalens, a cluster of coupled subwavelength resonators. Dispersion allows the conversion of subwavelength wavefields into temporal signatures while the Purcell effect permits an efficient radiation of this information in the far-field. The study of an array of resonant wires using microwaves provides a physical understanding of the underlying mechanism. We experimentally demonstrate imaging and focusing from the far-field with resolutions far below the diffraction limit. This concept is realizable at any frequency where subwavelength resonators can be designed.Comment: 4 pages, 3 figure

    Multi-path fading and interference mitigation with Reconfigurable Intelligent Surfaces

    Get PDF
    We exploit multi-path fading propagation to improve both the signal-to-interference-plus-noise-ratio and the stability of wireless communications within electromagnetic environments that support rich multipath propagation. Quasi-passive propagation control with multiple binary reconfigurable intelligent surfaces is adopted to control the stationary waves supported by a metallic cavity hosting a software-defined radio link. Results are demonstrated in terms of the error vector magnitude minimization of a quadrature phase-shift modulation scheme under no-line-of-sight conditions. It is found that the magnitude of fluctuation of received symbols is reduced to a stable constellation by increasing the number of individual surfaces, or elements, thus demonstrating channel hardening. By using a second software-defined radio device as a jammer, we demonstrate the ability of the RIS to mitigate the co-channel interference by channel hardening. Results are of particular interest in smart radio environments for mobile network architectures beyond 5G
    corecore