46 research outputs found
Recommended from our members
Checkpoint Genes at the Cancer Side of the Immunological Synapse in Bladder Cancer.
Immune checkpoint inhibitors have revolutionized cancer therapy, but not all cancers respond to the currently available drugs, and even within cancers considered responsive to such modality, response rates range between 15 and 40%, depending on the cancer type, the line of treatment, and yet unknown clinical/molecular factors. Coordinated expression of checkpoint proteins was shown to occur on T cells, probably allowing fine-tuning of the signal transmitted to the cell. We performed a bioinformatic analysis of the expression of putative checkpoint mRNAs at the cancer side of the immunological synapse from the bladder cancer tumorgenome atlas (TCGA) database. Fifteen mRNAs, corresponding to both coinhibitory and costimulatory checkpoints, were shown to be expressed above a designated threshold. Of these, seven mRNAs were found to be coexpressed: CD277, PD-1L, CD48, CD86, galectin-9, TNFRSF14 (HVEM), and CD40. The expression of 2 of these mRNAs-BTN3A1 (CD277) and TNFRSF14 (HVEM)-was positively correlated with overall survival in the TCGA database. All these seven mRNA share putative binding sites of a few transcription factors (TFs). Of these, the expression of the TF BACH-2 was positively correlated with the expression of checkpoint mRNAs from the network. This suggests a joint transcriptional regulation on the expression of checkpoint mRNAs at the bladder tumor side of the immunological synapse
Changes in plasma biomarkers following treatment with cabozantinib in metastatic castration-resistant prostate cancer: a post hoc analysis of an extension cohort of a phase II trial
BACKGROUND: Cabozantinib is an orally available inhibitor of tyrosine kinases including VEGFR2 and c-MET. We performed a post hoc analysis to find associations between select plasma biomarkers and treatment response in patients (pts) with metastatic castration resistant prostate cancer (mCRPC) who received cabozantinib 100Â mg daily as part of a phase 2 non-randomized expansion cohort (NCT00940225). METHODS: Plasma samples were collected at baseline, 6Â weeks and at time of maximal response from 81 mCRPC pts with bone metastases, of which 33 also had measurable soft-tissue disease. Levels of 27 biomarkers were measured in duplicate using enzyme-linked immunosorbent assay. Spearman correlation coefficients were calculated for the association between biomarker levels or their change on treatment and either bone scan response (BSR) or soft tissue response according to RECIST. RESULTS: A BSR and RECIST response were seen in 66/81 pts (81Â %) and 6/33 pts (18Â %) respectively. No significant associations were found between any biomarker at any time point and either type of response. Plasma concentrations of VEGFA, FLT3L, c-MET, AXL, Gas6A, bone-specific alkaline phosphatase, interleukin-8 and the hypoxia markers CA9 and clusterin significantly increased during treatment with cabozantinib irrespective of response. The plasma concentrations of VEGFR2, Trap5b, Angiopoietin-2, TIMP-2 and TIE-2 significantly decreased during treatment with caboznatinib. CONCLUSIONS: Our data did not reveal plasma biomarkers associated with response to cabozantinib. The observed alterations in several biomarkers during treatment with cabozantinib may provide insights on the effects of cabozantinib on tumor cells and on tumor micro-environment and may help point to potential co-targeting approaches
Niraparib in patients with metastatic castration-resistant prostate cancer and DNA repair gene defects (GALAHAD): a multicentre, open-label, phase 2 trial
Background
Metastatic castration-resistant prostate cancers are enriched for DNA repair gene defects (DRDs) that can be susceptible to synthetic lethality through inhibition of PARP proteins. We evaluated the anti-tumour activity and safety of the PARP inhibitor niraparib in patients with metastatic castration-resistant prostate cancers and DRDs who progressed on previous treatment with an androgen signalling inhibitor and a taxane.
Methods
In this multicentre, open-label, single-arm, phase 2 study, patients aged at least 18 years with histologically confirmed metastatic castration-resistant prostate cancer (mixed histology accepted, with the exception of the small cell pure phenotype) and DRDs (assessed in blood, tumour tissue, or saliva), with progression on a previous next-generation androgen signalling inhibitor and a taxane per Response Evaluation Criteria in Solid Tumors 1.1 or Prostate Cancer Working Group 3 criteria and an Eastern Cooperative Oncology Group performance status of 0–2, were eligible. Enrolled patients received niraparib 300 mg orally once daily until treatment discontinuation, death, or study termination. For the final study analysis, all patients who received at least one dose of study drug were included in the safety analysis population; patients with germline pathogenic or somatic biallelic pathogenic alterations in BRCA1 or BRCA2 (BRCA cohort) or biallelic alterations in other prespecified DRDs (non-BRCA cohort) were included in the efficacy analysis population. The primary endpoint was objective response rate in patients with BRCA alterations and measurable disease (measurable BRCA cohort). This study is registered with ClinicalTrials.gov, NCT02854436.
Findings
Between Sept 28, 2016, and June 26, 2020, 289 patients were enrolled, of whom 182 (63%) had received three or more systemic therapies for prostate cancer. 223 (77%) of 289 patients were included in the overall efficacy analysis population, which included BRCA (n=142) and non-BRCA (n=81) cohorts. At final analysis, with a median follow-up of 10·0 months (IQR 6·6–13·3), the objective response rate in the measurable BRCA cohort (n=76) was 34·2% (95% CI 23·7–46·0). In the safety analysis population, the most common treatment-emergent adverse events of any grade were nausea (169 [58%] of 289), anaemia (156 [54%]), and vomiting (111 [38%]); the most common grade 3 or worse events were haematological (anaemia in 95 [33%] of 289; thrombocytopenia in 47 [16%]; and neutropenia in 28 [10%]). Of 134 (46%) of 289 patients with at least one serious treatment-emergent adverse event, the most common were also haematological (thrombocytopenia in 17 [6%] and anaemia in 13 [4%]). Two adverse events with fatal outcome (one patient with urosepsis in the BRCA cohort and one patient with sepsis in the non-BRCA cohort) were deemed possibly related to niraparib treatment.
Interpretation
Niraparib is tolerable and shows anti-tumour activity in heavily pretreated patients with metastatic castration-resistant prostate cancer and DRDs, particularly in those with BRCA alterations
Ramucirumab plus docetaxel versus placebo plus docetaxel in patients with locally advanced or metastatic urothelial carcinoma after platinum-based therapy (RANGE): a randomised, double-blind, phase 3 trial
Few treatments with a distinct mechanism of action are available for patients with platinum-refractory advanced or metastatic urothelial carcinoma. We assessed the efficacy and safety of treatment with docetaxel plus either ramucirumab-a human IgG1 VEGFR-2 antagonist-or placebo in this patient population
Met-HGF/SF Signal Transduction Induces Mimp, a Novel Mitochondrial Carrier Homologue, Which Leads to Mitochondrial Depolarization
Met-hepatocyte growth factor/scatter factor (HGF/SF) signaling plays an important role in epithelial tissue morphogenesis, lumen formation, and tumorigenicity. We have recently demonstrated that HGF/SF also alters the metabolic activity of cells by enhancing both the glycolytic and oxidative phosphorylation pathways of energy production. Using differential display polymerase chain reaction, we cloned a novel gene, designated mimp (Met-Induced Mitochondrial Protein), which is upregulated in NIH-3T3 cells cotransfected with both HGF/SF and Met (HMH cells). Northern and Western blot analyses showed that mimp is induced in several Metexpressing cell lines following treatment with HGF/SF. Mimp encodes a 33-kDa protein that shows sequence homology to the family of mitochondrial carrier proteins (MCPs). Murine Mimp (mMimp) is expressed in a wide variety of tissues, exhibiting an expression pattern similar to Met. Predominant expression is seen in liver, kidney, heart, skeletal muscle, and testis. Using immunostaining for HA-tagged mMimp and a GFP-mMimp chimeric protein as well as subcellular fractionation, we determined that Mimp is primarily localized to the mitochondria. Ectopic expression of mMimp in the Met-responsive adenocarcinoma cell line, DA3, reduced the mitochondrial membrane potential (uncoupling activity). The extent of the mitochondrial depolarization positively correlated with the level of Mimp expression. Our results demonstrate that Mimp is a novel mitochondrial carrier homologue upregulated by Met-HGF/SF signal transduction, which leads to mitochondrial depolarization, and suggest novel links among tyrosine kinase signaling, mitochondrial function, and cellular bioenergetics
Recommended from our members
Checkpoint Genes at the Cancer Side of the Immunological Synapse in Bladder Cancer.
Immune checkpoint inhibitors have revolutionized cancer therapy, but not all cancers respond to the currently available drugs, and even within cancers considered responsive to such modality, response rates range between 15 and 40%, depending on the cancer type, the line of treatment, and yet unknown clinical/molecular factors. Coordinated expression of checkpoint proteins was shown to occur on T cells, probably allowing fine-tuning of the signal transmitted to the cell. We performed a bioinformatic analysis of the expression of putative checkpoint mRNAs at the cancer side of the immunological synapse from the bladder cancer tumorgenome atlas (TCGA) database. Fifteen mRNAs, corresponding to both coinhibitory and costimulatory checkpoints, were shown to be expressed above a designated threshold. Of these, seven mRNAs were found to be coexpressed: CD277, PD-1L, CD48, CD86, galectin-9, TNFRSF14 (HVEM), and CD40. The expression of 2 of these mRNAs-BTN3A1 (CD277) and TNFRSF14 (HVEM)-was positively correlated with overall survival in the TCGA database. All these seven mRNA share putative binding sites of a few transcription factors (TFs). Of these, the expression of the TF BACH-2 was positively correlated with the expression of checkpoint mRNAs from the network. This suggests a joint transcriptional regulation on the expression of checkpoint mRNAs at the bladder tumor side of the immunological synapse
The Crosstalk between IL-22 Signaling and miR-197 in Human Keratinocytes
<div><p>The interaction between the immune system and epithelial cells is tightly regulated. Aberrations of this balance may result in inflammatory diseases such as psoriasis, inflammatory bowel disease and rheumatoid arthritis. IL-22 is produced by Th17, Th22 and Th1 cells. Putative targets for IL-22 are cells in the skin, kidney, digestive and respiratory systems. The highest expression of IL-22 receptor is found in the skin. IL-22 plays an important role in the pathogenesis of T cell-mediated inflammatory diseases such as psoriasis, inflammatory bowel disease and rheumatoid arthritis. Recently, we found that miR-197 is down regulated in psoriatic lesions. In the present work we show that miR-197 over expression inhibits keratinocytes proliferation induced by IL-22 and keratinocytes migration. In addition, we found that IL-22 activates miR-197 expression through the binding of phosphorylated STAT3 to sequences in the putative promoter of miR-197. Finally we found that IL-22 receptor subunit IL22RA1 is a direct target of miR-197. Hence, we identified a novel feedback loop controlling IL-22 signaling, in which IL-22 induces miR-197, which in turn, negatively regulates IL-22 receptor and attenuates the biological outcome of such signaling. Regulation of this pathway may be important in inflammatory skin disorders such a psoriasis and in wound healing.</p></div
Promoter-Associated RNAs Regulate HSPC152 Gene Expression in Malignant Melanoma
The threshold of 200 nucleotides (nt) conventionally divides non-coding RNAs (ncRNA) into long ncRNA (lincRNA, that have more than 200 nt in length) and the remaining ones which are grouped as “small” RNAs (microRNAs, small nucleolar RNAs and piwiRNAs). Promoter-associated RNAs (paRNAs) are generally 200–500 nt long and are transcribed from sequences positioned in the promoter regions of genes. Growing evidence suggests that paRNAs play a crucial role in controlling gene transcription. Here, we used deep sequencing to identify paRNA sequences that show altered expression in a melanoma cell line compared to normal melanocytes. Thousands of reads were mapped to transcription start site (TSS) regions. We limited our search to paRNAs adjacent to genes with an expression that differed between melanoma and normal melanocytes and a length of 200–500 nt that did not overlap the gene mRNA by more than 300 nt, ultimately leaving us with 11 such transcripts. Using quantitative real-time PCR (qRT-PCR), we found a significant correlation between the expression of the mRNA and its corresponding paRNA for two studied genes: TYR and HSPC152. Ectopic overexpression of the paRNA of HSPC152 (designated paHSPC) enhanced the expression of the HSPC152 mRNA, and an siRNA targeting the paHSPC152 decreased the expression of the HSPC152 mRNA. Overexpression of paHSPC also affected the epigenetic structure of its putative promoter region along with effects on several biologic features of melanoma cells. The ectopic expression of the paRNA to TYR did not have any effect. Overall, our work indicates that paRNAs may serve as an additional layer in the regulation of gene expression in melanoma, thus meriting further investigation