19,189 research outputs found
Thermopower of gapped bilayer graphene
We calculate thermopower of clean and impure bilayer graphene systems.
Opening a band gap through the application of an external electric field is
shown to greatly enhance the thermopower of bilayer graphene, which is more
than four times that of the monolayer graphene and gapless bilayer graphene at
room temperature. The effect of scattering by dilute charged impurities is
discussed in terms of the self-consistent Born approximation. Temperature
dependence of the thermopower is also analyzed.Comment: 8 pages, 5 figures; An inconsistency in the definitions of Eq.(17)
and (18) in version 1 is found and correcte
Functional stability of HIV-1 envelope trimer affects accessibility to broadly neutralizing antibodies at its apex
ABSTRACT
The trimeric envelope glycoprotein spike (Env) of HIV-1 is the target of vaccine development to elicit broadly neutralizing antibodies (bnAbs). Env trimer instability and heterogeneity in principle make subunit interfaces inconsistent targets for the immune response. Here, we investigate how functional stability of Env relates to neutralization sensitivity to V2 bnAbs and V3 crown antibodies that engage subunit interfaces upon binding to unliganded Env. Env heterogeneity was inferred when antibodies neutralized a mutant Env with a plateau of less than 100% neutralization. A statistically significant correlation was found between the stability of mutant Envs and the MPN of V2 bnAb, PG9, as well as an inverse correlation between stability of Env and neutralization by V3 crown antibody, 447-52D. A number of Env-stabilizing mutations and V2 bnAb-enhancing mutations were identified in Env, but they did not always overlap, indicating distinct requirements of functional stabilization versus antibody recognition. Blocking complex glycosylation of Env affected V2 bnAb recognition, as previously described, but also notably increased functional stability of Env. This study shows how instability and heterogeneity affect antibody sensitivity of HIV-1 Env, which is relevant to vaccine design involving its dynamic apex.
IMPORTANCE
The Env trimer is the only viral protein on the surface of HIV-1 and is the target of neutralizing antibodies that reduce viral infectivity. Quaternary epitopes at the apex of the spike are recognized by some of the most potent and broadly neutralizing antibodies to date. Being that their glycan-protein hybrid epitopes are at subunit interfaces, the resulting heterogeneity can lead to partial neutralization. Here, we screened for mutations in Env that allowed for complete neutralization by the bnAbs. We found that when mutations outside V2 increased V2 bnAb recognition, they often also increased Env stability-of-function and decreased binding by narrowly neutralizing antibodies to the V3 crown. Three mutations together increased neutralization by V2 bnAb and eliminated binding by V3 crown antibodies. These results may aid the design of immunogens that elicit antibodies to the trimer apex.
</jats:p
Zero-temperature criticality in the two-dimensional gauge glass model
The zero-temperature critical state of the two-dimensional gauge glass model
is investigated. It is found that low-energy vortex configurations afford a
simple description in terms of gapless, weakly interacting vortex-antivortex
pair excitations. A linear dielectric screening calculation is presented in a
renormalization group setting that yields a power-law decay of spin-wave
stiffness with distance. These properties are in agreement with low-temperature
specific heat and spin-glass susceptibility data obtained in large-scale
multi-canonical Monte Carlo simulations.Comment: 4 pages, 4 figure
On positive solutions and the Omega limit set for a class of delay differential equations
This paper studies the positive solutions of a class of delay differential
equations with two delays. These equations originate from the modeling of
hematopoietic cell populations. We give a sufficient condition on the initial
function for such that the solution is positive for all time .
The condition is "optimal". We also discuss the long time behavior of these
positive solutions through a dynamical system on the space of continuous
functions. We give a characteristic description of the limit set of
this dynamical system, which can provide informations about the long time
behavior of positive solutions of the delay differential equation.Comment: 15 pages, 2 figure
Mesoscopic Kondo effect of a quantum dot embedded in an Aharonov-Bohm ring with intradot spin-flip scattering
We study the Kondo effect in a quantum dot embedded in a mesoscopic ring
taking into account intradot spin-flip scattering . Based on the finite-
slave-boson mean-field approach, we find that the Kondo peak in the density of
states is split into two peaks by this coherent spin-flip transition, which is
responsible for some interesting features of the Kondo-assisted persistent
current circulating the ring: (1) strong suppression and crossover to a sine
function form with increasing ; (2) appearance of a "hump" in the
-dependent behavior for odd parity. -induced reverse of the persistent
current direction is also observed for odd parity.Comment: 7 pages,6 figures, to be published by Europhys. Let
- …