921 research outputs found

    Improving the spatial resolution by effective subtraction technique at Irkutsk incoherent scatter radar: the theory and experiment

    Full text link
    We describe a sounding technique that allows us to improve spatial resolution of Irkutsk Incoherent Scatter Radar without loosing spectral resolution. The technique is based on transmitting of rectangle pulses of different duration in various sounding runs and subtracting correlation matrixes. Theoretically and experimentally we have shown, that subtraction of the mean-square parameters of the scattered signal for different kinds of the sounding signal one from another allows us to solve the problem within the framework of quasi-static ionospheric parameters approximation.Comment: 4 pages, 3 figures, to appear at URSI-2011 conferenc

    Phase-coded pulse aperiodic transmitter coding

    Get PDF
    Both ionospheric and weather radar communities have already adopted the method of transmitting radar pulses in an aperiodic manner when measuring moderately overspread targets. Among the users of the ionospheric radars, this method is called Aperiodic Transmitter Coding (ATC), whereas the weather radar users have adopted the term Simultaneous Multiple Pulse-Repetition Frequency (SMPRF). When probing the ionosphere at the carrier frequencies of the EISCAT Incoherent Scatter Radar facilities, the range extent of the detectable target is typically of the order of one thousand kilometers – about seven milliseconds – whereas the characteristic correlation time of the scattered signal varies from a few milliseconds in the D-region to only tens of microseconds in the F-region. If one is interested in estimating the scattering autocorrelation function (ACF) at time lags shorter than the F-region correlation time, the D-region must be considered as a moderately overspread target, whereas the F-region is a severely overspread one. Given the technical restrictions of the radar hardware, a combination of ATC and phase-coded long pulses is advantageous for this kind of target. We evaluate such an experiment under infinitely low signal-to-noise ratio (SNR) conditions using lag profile inversion. In addition, a qualitative evaluation under high-SNR conditions is performed by analysing simulated data. The results show that an acceptable estimation accuracy and a very good lag resolution in the D-region can be achieved with a pulse length long enough for simultaneous E- and F-region measurements with a reasonable lag extent. The new experiment design is tested with the EISCAT Tromsø VHF (224 MHz) radar. An example of a full D/E/F-region ACF from the test run is shown at the end of the paper

    Diffraction-Limited Imaging and Photometry of NGC 1068

    Get PDF
    The nearby Seyfert 2 Galaxy NGC 1068 was observed with speckle imaging techniques in the near-infrared H-band (1.6 microns) at the Hale 200-inch Telescope and K-band (2.2 microns) at the 10 m Keck I Telescope. Images with diffraction limited or near-diffraction limited resolutions of 0.''05 - 0.''1 were obtained and used to search for structure in the nuclear region. Images of the nucleus of NGC 1068 reveal an extended region of emission which accounts for nearly 50% of the nuclear flux at K-band. This region extends 10 pc on either side of an unresolved point source nucleus which is at most, 0.''02 or 1.4 pc in size. Both the point source and the newly imaged extended emission are very red, with identical H-K colors corresponding to a color temperature of 800 K. While the point source is of a size to be consistent with grains in thermal equilibrium with the nuclear source, the extended emission is not. It must consist either of nuclear emission which has been reflected off an extended dusty disk or of small grains raised to transiently high temperatures by reflected UV photons.Comment: accepted to AJ, AAS LaTeX and epsfig, 22 pages incl. 5 ps figure

    Transient shear banding in viscoelastic Maxwell fluids

    Get PDF
    The fluidization of complex fluids is studied in the context of a Maxwell viscoelastic structural fluid model and compared to the purely viscous case. Solving iteratively the structural models together with the NavierStokes equation for the circular Couette flow gives spatially and temporally resolved velocity fields closely resembling those found experimentally for viscoelastic carbopol gels. Namely, transient shear banding is found during the initial fluidization phase. Although both structural models show transient shear bands, the viscoelastic one captures the experimental observations in greater detail, showing, for instance, the elastic backward flows during the transient shear band initialization stage

    Transmission code optimization method for incoherent scatter radar

    Full text link
    When statistical inversion of a lag profile is used to determine an incoherent scatter target, the posterior variance of the estimated target can be used to determine how well a certain set of transmission codes perform. In this work we present an incoherent scatter radar transmission code optimization search method suitable for different modulation types, including binary phase, polyphase and amplitude modulation. We find that the combination of amplitude and phase modulation provides better performance than traditional binary phase coding, in some cases giving better accuracy than alternating codes.Comment: Submitted to Annales Geophysica

    Transient shear banding in time-dependent fluids

    Get PDF
    We study the dynamics of shear-band formation and evolution using a simple rheological model. The description couples the local structure and viscosity to the applied shear stress. We consider in detail the Couette geometry, where the model is solved iteratively with the Navier-Stokes equation to obtain the time evolution of the local velocity and viscosity fields. It is found that the underlying reason for dynamic effects is the nonhomogeneous shear distribution, which is amplified due to a positive feedback between the flow field and the viscosity response of the shear thinning fluid. This offers a simple explanation for the recent observations of transient shear banding in time-dependent fluids. Extensions to more complicated rheological systems are considered
    • …
    corecore