713 research outputs found
A Baer-Krull theorem for quasi-ordered groups
We give group analogs of two important theorems of real algebra concerning
convex valuations, one of which is the Baer-Krull theorem. We do this by using
quasi-orders, which gives a uniform approach to valued and ordered groups. We
also recover the classical Baer-Krull theorem from its group analog
Identifiability and consistent estimation of nonparametric translation hidden Markov models with general state space
This paper considers hidden Markov models where the observations are given as
the sum of a latent state which lies in a general state space and some
independent noise with unknown distribution. It is shown that these fully
nonparametric translation models are identifiable with respect to both the
distribution of the latent variables and the distribution of the noise, under
mostly a light tail assumption on the latent variables. Two nonparametric
estimation methods are proposed and we prove that the corresponding estimators
are consistent for the weak convergence topology. These results are illustrated
with numerical experiments
Random cubic planar graphs converge to the Brownian sphere
In this paper, the scaling limit of random connected cubic planar graphs (respectively multigraphs) is shown to be the Brownian sphere.
The proof consists in essentially two main steps. First, thanks to the known decomposition of cubic planar graphs into their 3-connected components, the metric structure of a random cubic planar graph is shown to be well approximated by its unique 3-connected component of linear size, with modified distances.
Then, Whitney's theorem ensures that a 3-connected cubic planar graph is the dual of a simple triangulation, for which it is known that the scaling limit is the Brownian sphere. Curien and Le Gall have recently developed a framework to study the modification of distances in general triangulations and in their dual. By extending this framework to simple triangulations, it is shown that 3-connected cubic planar graphs with modified distances converge jointly with their dual triangulation to the Brownian sphere
Random cubic planar graphs converge to the Brownian sphere
In this paper, the scaling limit of random connected cubic planar graphs
(respectively multigraphs) is shown to be the Brownian sphere.
The proof consists in essentially two main steps. First, thanks to the known
decomposition of cubic planar graphs into their 3-connected components, the
metric structure of a random cubic planar graph is shown to be well
approximated by its unique 3-connected component of linear size, with modified
distances.
Then, Whitney's theorem ensures that a 3-connected cubic planar graph is the
dual of a simple triangulation, for which it is known that the scaling limit is
the Brownian sphere. Curien and Le Gall have recently developed a framework to
study the modification of distances in general triangulations and in their
dual. By extending this framework to simple triangulations, it is shown that
3-connected cubic planar graphs with modified distances converge jointly with
their dual triangulation to the Brownian sphere.Comment: 55 page
- …