10 research outputs found

    S&Reg: End-to-End Learning-Based Model for Multi-Goal Path Planning Problem

    Full text link
    In this paper, we propose a novel end-to-end approach for solving the multi-goal path planning problem in obstacle environments. Our proposed model, called S&Reg, integrates multi-task learning networks with a TSP solver and a path planner to quickly compute a closed and feasible path visiting all goals. Specifically, the model first predicts promising regions that potentially contain the optimal paths connecting two goals as a segmentation task. Simultaneously, estimations for pairwise distances between goals are conducted as a regression task by the neural networks, while the results construct a symmetric weight matrix for the TSP solver. Leveraging the TSP result, the path planner efficiently explores feasible paths guided by promising regions. We extensively evaluate the S&Reg model through simulations and compare it with the other sampling-based algorithms. The results demonstrate that our proposed model achieves superior performance in respect of computation time and solution cost, making it an effective solution for multi-goal path planning in obstacle environments. The proposed approach has the potential to be extended to other sampling-based algorithms for multi-goal path planning.Comment: 7 paegs, 12 figures. Accepted at IEEE International Conference on Robot and Human Interactive Communication (ROMAN), 202

    PKE-RRT: Efficient Multi-Goal Path Finding Algorithm Driven by Multi-Task Learning Model

    Full text link
    Multi-goal path finding (MGPF) aims to find a closed and collision-free path to visit a sequence of goals orderly. As a physical travelling salesman problem, an undirected complete graph with accurate weights is crucial for determining the visiting order. Lack of prior knowledge of local paths between vertices poses challenges in meeting the optimality and efficiency requirements of algorithms. In this study, a multi-task learning model designated Prior Knowledge Extraction (PKE), is designed to estimate the local path length between pairwise vertices as the weights of the graph. Simultaneously, a promising region and a guideline are predicted as heuristics for the path-finding process. Utilizing the outputs of the PKE model, a variant of Rapidly-exploring Random Tree (RRT) is proposed known as PKE-RRT. It effectively tackles the MGPF problem by a local planner incorporating a prioritized visiting order, which is obtained from the complete graph. Furthermore, the predicted region and guideline facilitate efficient exploration of the tree structure, enabling the algorithm to rapidly provide a sub-optimal solution. Extensive numerical experiments demonstrate the outstanding performance of the PKE-RRT for the MGPF problem with a different number of goals, in terms of calculation time, path cost, sample number, and success rate.Comment: 9 pages, 12 figure

    Neural-Network-Driven Method for Optimal Path Planning via High-Accuracy Region Prediction

    Full text link
    Sampling-based path planning algorithms suffer from heavy reliance on uniform sampling, which accounts for unreliable and time-consuming performance, especially in complex environments. Recently, neural-network-driven methods predict regions as sampling domains to realize a non-uniform sampling and reduce calculation time. However, the accuracy of region prediction hinders further improvement. We propose a sampling-based algorithm, abbreviated to Region Prediction Neural Network RRT* (RPNN-RRT*), to rapidly obtain the optimal path based on a high-accuracy region prediction. First, we implement a region prediction neural network (RPNN), to predict accurate regions for the RPNN-RRT*. A full-layer channel-wise attention module is employed to enhance the feature fusion in the concatenation between the encoder and decoder. Moreover, a three-level hierarchy loss is designed to learn the pixel-wise, map-wise, and patch-wise features. A dataset, named Complex Environment Motion Planning, is established to test the performance in complex environments. Ablation studies and test results show that a high accuracy of 89.13% is achieved by the RPNN for region prediction, compared with other region prediction models. In addition, the RPNN-RRT* performs in different complex scenarios, demonstrating significant and reliable superiority in terms of the calculation time, sampling efficiency, and success rate for optimal path planning.Comment: 9 pages, 8 figure

    Neuro PID control of power generation using a low temperature gap

    No full text

    Traffic signal control based on a predicted traffic jam distribution

    No full text
    corecore