40,915 research outputs found
Refining the Spin Hamiltonian in the Spin-1/2 Kagome Lattice Antiferromagnet ZnCu(OH)Cl using Single Crystals
We report thermodynamic measurements of the S=1/2 kagome lattice
antiferromagnet ZnCu(OH)Cl, a promising candidate system with
a spin-liquid ground state. Using single crystal samples, the magnetic
susceptibility both perpendicular and parallel to the kagome plane has been
measured. A small, temperature-dependent anisotropy has been observed, where
at high temperatures and at
low temperatures. Fits of the high-temperature data to a Curie-Weiss model also
reveal an anisotropy. By comparing with theoretical calculations, the presence
of a small easy-axis exchange anisotropy can be deduced as the primary
perturbation to the dominant Heisenberg nearest neighbor interaction. These
results have great bearing on the interpretation of theoretical calculations
based on the kagome Heisenberg antiferromagnet model to the experiments on
ZnCu(OH)Cl.Comment: 4 pages, 4 figure
Local Spin Susceptibility of the S=1/2 Kagome Lattice in ZnCu3(OD)6Cl2
We report single-crystal 2-D NMR investigation of the nearly ideal spin S=1/2
kagome lattice ZnCu3(OD)6Cl2. We successfully identify 2-D NMR signals
originating from the nearest-neighbors of Cu2+ defects occupying Zn sites. From
the 2-D Knight shift measurements, we demonstrate that weakly interacting Cu2+
spins at these defects cause the large Curie-Weiss enhancement toward T=0
commonly observed in the bulk susceptibility data. We estimate the intrinsic
spin susceptibility of the kagome planes by subtracting defect contributions,
and explore several scenarios.Comment: 4 figures; published in PR-B Rapid Communication
Heavy Color-Octet Particles at the LHC
Many new-physics models, especially those with a color-triplet top-quark
partner, contain a heavy color-octet state. The "naturalness" argument for a
light Higgs boson requires that the color-octet state be not much heavier than
a TeV, and thus it can be pair-produced with large cross sections at
high-energy hadron colliders. It may decay preferentially to a top quark plus a
top-partner, which subsequently decays to a top quark plus a color-singlet
state. This singlet can serve as a WIMP dark-matter candidate. Such decay
chains lead to a spectacular signal of four top quarks plus missing energy. We
pursue a general categorization of the color-octet states and their decay
products according to their spin and gauge quantum numbers. We review the
current bounds on the new states at the LHC and study the expected discovery
reach at the 8-TeV and 14-TeV runs. We also present the production rates at a
future 100-TeV hadron collider, where the cross sections will be many orders of
magnitude greater than at the 14-TeV LHC. Furthermore, we explore the extent to
which one can determine the color octet's mass, spin, and chiral couplings.
Finally, we propose a test to determine whether the fermionic color octet is a
Majorana particle.Comment: 20 pages, 9 figures; journal versio
- β¦