41 research outputs found

    Optical parametric oscillators and precision optical frequency measurements

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 1996.Includes bibliographical references (leaves 254-258).by Dicky Lee.Ph.D

    Case Study: First-Time Success ASIC Design Methodology Applied to a Multi-Processor System-on-Chip

    Get PDF
    Achieving first-time success is crucial in the ASIC design league considering the soaring cost, tight time-to-market window, and competitive business environment. One key factor in ensuring first-time success is a well-defined ASIC design methodology. Here we propose a novel ASIC design methodology that has been proven for the RUMPS401 (Rahman University Multi-Processor System 401) Multiprocessor System-on-Chip (MPSoC) project. The MPSoC project is initiated by Universiti Tunku Abdul Rahman (UTAR) VLSI design center. The proposed methodology includes the use of Universal Verification Methodology (UVM). The use of electronic design automation (EDA) software during each step of the design methodology is also presented. The first-time success RUMPS401 demonstrates the use of the proposed ASIC design methodology and the good of using one. Especially this project is carried on in educational environment that is even more limited in budget, resources and know-how, compared to the business and industrial counterparts. Here a novel ASIC design methodology that is tailored to first-time success MPSoC is presented

    Comparison of meat quality, fatty acid composition and aroma volatiles of Chikso and Hanwoo beef

    Get PDF
    Objective Although Hanwoo has been selected as the superior commercial beef cattle breed in Korea, Chikso (Korean brindle cattle) is still recognized as a valuable breed for beef production. The aim of this study was to compare the meat quality, fatty acid composition and aroma volatiles of beef from Chikso and Hanwoo steers maintained under identical feed management, as information regarding these characteristics is still limited. Methods A total of 19 carcasses with a quality grade of 1 were selected, and strip loin (longissimus lumborum) cuts were collected from 11 Hanwoo carcasses and 8 Chikso carcasses. Meat quality and aroma analyses were performed at day four postmortem. Results Though Hanwoo strip loin tended to have higher fat content (15.37%) than Chikso (12.01%), no significant differences were observed. Meat pH, water-holding capacity, cooking loss, shear force value, instrumental surface color (Commission International De L’eclairage L*, a*, b*, chroma, and hue angle) and fatty acid composition were not significantly different. Roasted Chikso beef released more intense aroma than roasted Hanwoo beef based on the total area units of identified volatiles. Among identified volatiles, the amounts of toluene, heptanal, octanal, and nonanal were higher in roasted Chikso beef than in roasted Hanwoo beef. In addition, the aroma pattern of the roasted beef from these breeds was well-discriminated by electronic nose. Conclusion No distinct differences were found in terms of meat quality between Hanwoo and Chikso beef in this study. However, the aroma pattern and volatiles of roasted Hanwoo and Chikso beef were different according to instrumental analysis

    Optical Propagation and Communication

    Get PDF
    Contains an introduction and reports on four research projects.Maryland Procurement Office Contract MDA 904-90-C5070Maryland Procurement Office Contract MDA 904-93-C4169U.S. Air Force - Office of Scientific Research Grant F49620-93-1-0604Charles S. Draper Laboratories Contract DL-H-441698MIT Lincoln Laboratory Contract CX-16335National Institute of Standards and Technology Grant 60-NANBOD-1052U.S. Army Research Office Grant DAAL03-90-G-0128U.S. Army Research Office Grant DAAH04-93-G-0399U.S. Army Research Office Grant DAAH04-93-G-0187U.S. Air Force - Office of Scientific Research Contract F49620-90-C-003

    Optical Propagation and Communication

    Get PDF
    Contains an introduction and reports on three research projects.Maryland Procurement Office Contract MDA 904-93-C4169Maryland Procurement Office Contract MDA 903-94-C6071U.S. Air Force - Office of Scientific Research Grant F49620-93-1-0604MIT Lincoln Laboratory Advanced Concepts Program Contract CX-16335U.S. Army Research Office Grant DAAH04-93-G-0399U.S. Army Research Office Grant DAAH04-93-G-018

    Optical Propagation and Communication

    Get PDF
    Contains an introduction and reports on three research projects.Maryland Procurement Office Contract MDA 904-93-C4169Maryland Procurement Office Contract MDA 903-94-C6071U.S. Air Force - Office of Scientific Research Grant F49620-93-1-0604MIT Lincoln Laboratory Advanced Concepts Program Contract CX-16335U.S. Army Research Office Grant DAAH04-93-G-0399U.S. Army Research Office Grant DAAH04-93-G-018

    Optical Propagation and Communication

    Get PDF
    Contains an introduction and reports on four research project.Maryland Procurement Office Contract MDA 904-90-C-5070Charles S. Draper Laboratories Contract DL-H-441698National Institute of Standards and Technology Grant 60-NANBOD-1052U.S. Army Research Office Grant DAAL03-90-G-0128U.S. Navy - Office of Naval Research Grant N00014-89-J-1163U.S. Air Force - Office of Scientific Research Contract F49620-90-C-003

    Optical Propagation and Communication

    Get PDF
    Contains an introduction and reports on five research projects.Maryland Procurement Office Contract MDA 904-90-C-5070National Science Foundation Grant ECS 87-18970National Institute of Standards and Technology Grant 60-NANBOD-1052U.S. Army Research Office Grant DAAL03-90-G-0128U.S. Army Research Office Contract DAAL03-87-K-0117U.S. Navy - Office of Naval Research Grant N00014-89-J-1163U.S. Air Force - Office of Scientific Research Contract F49620-87-C-0043U.S. Air Force - Office of Scientific Research Contract F49620-90-C-003
    corecore