1,070 research outputs found
Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil
In sugarcane biorefineries, the lignocellulosic portion of the sugarcane biomass (i.e. bagasse and cane trash) can be used as fuel for electricity production and/or feedstock for second generation (2G) ethanol. This study presents a techno-economic analysis of upgraded sugarcane biorefineries in Brazil, aiming at utilizing surplus bagasse and cane trash for electricity and/or ethanol production. The study investigates the trade-off on sugarcane biomass use for energy production: bioelectricity versus 2G ethanol production. The BeWhere mixed integer and spatially explicit model is used for evaluating the choice of technological options. Different scenarios are developed to find the optimal utilization of sugarcane biomass. The study finds that energy prices, type of electricity substituted, biofuel support and carbon tax, investment costs, and conversion efficiencies are the major factors influencing the technological choice. At the existing market and technological conditions applied in the upgraded biorefineries, 300 PJy^12G ethanol could be optimally produced and exported to the EU, which corresponds to 2.5% of total transport fuel demand in the EU. This study provides a methodological framework on how to optimize the alternative use of agricultural residues and industrial co-products for energy production in agro-industrie
Modeling potential responses to smallpox as a bioterrorist weapon.
We constructed a mathematical model to describe the spread of smallpox after a deliberate release of the virus. Assuming 100 persons initially infected and 3 persons infected per infectious person, quarantine alone could stop disease transmission but would require a minimum daily removal rate of 50% of those with overt symptoms. Vaccination would stop the outbreak within 365 days after release only if disease transmission were reduced to <0.85 persons infected per infectious person. A combined vaccination and quarantine campaign could stop an outbreak if a daily quarantine rate of 25% were achieved and vaccination reduced smallpox transmission by > or = 33%. In such a scenario, approximately 4,200 cases would occur and 365 days would be needed to stop the outbreak. Historical data indicate that a median of 2,155 smallpox vaccine doses per case were given to stop outbreaks, implying that a stockpile of 40 million doses should be adequate
Getting the elastic scattering length by observing inelastic collisions in ultracold metastable helium atoms
We report an experiment measuring simultaneously the temperatureand the flux
of ions produced by a cloud of triplet metastablehelium atoms at the
Bose-Einstein critical temperature. The onsetof condensation is revealed by a
sharp increase of the ion fluxduring evaporative cooling. Combining our
measurements withprevious measurements of ionization in a pure BEC,we extract
an improved value of the scattering length nm. The analysis
includes corrections takinginto accountthe effect of atomic interactions on the
criticaltemperature, and thus an independent measurement of the
scatteringlength would allow a new test of these calculations
A High Power Lna Laser For Application To A New Polarized Electron Source
The recent development of high energy electron accelerators has generated a renewed interest in high current, high polarization electron sources. We have investigated several modifications to a method based on a pumped helium afterglow from which we expect improvements over the performances. These ones include the development of a high power, tunable LNA laser and the application of a new optical pumping scheme to the metastable helium atoms
Specht modules and semisimplicity criteria for Brauer and Birman--Murakami--Wenzl Algebras
A construction of bases for cell modules of the Birman--Murakami--Wenzl (or
B--M--W) algebra by lifting bases for cell modules of
is given. By iterating this procedure, we produce cellular bases for B--M--W
algebras on which a large abelian subalgebra, generated by elements which
generalise the Jucys--Murphy elements from the representation theory of the
Iwahori--Hecke algebra of the symmetric group, acts triangularly. The
triangular action of this abelian subalgebra is used to provide explicit
criteria, in terms of the defining parameters and , for B--M--W algebras
to be semisimple. The aforementioned constructions provide generalisations, to
the algebras under consideration here, of certain results from the Specht
module theory of the Iwahori--Hecke algebra of the symmetric group
Giant Helium Dimers Produced by Photoassociation of Ultracold Metastable Atoms
We produce giant helium dimers by photoassociation of metastable helium atoms
in a magnetically trapped, ultracold cloud. The photoassociation laser is
detuned red of the atomic line and produces strong heating
of the sample when resonant with molecular bound states. The temperature of the
cloud serves as an indicator of the molecular spectrum. We report good
agreement between our spectroscopic measurements and our calculations of the
five bound states belonging to a purely long-range potential well.
These previously unobserved states have classical inner turning points of about
150 and outer turning points as large as 1150 .Comment: 4 pages, 4 figure
Development of Aluminum LEKIDs for Balloon-Borne Far-IR Spectroscopy
We are developing lumped-element kinetic inductance detectors (LEKIDs)
designed to achieve background-limited sensitivity for far-infrared (FIR)
spectroscopy on a stratospheric balloon. The Spectroscopic Terahertz Airborne
Receiver for Far-InfraRed Exploration (STARFIRE) will study the evolution of
dusty galaxies with observations of the [CII] 158 m and other atomic
fine-structure transitions at , both through direct observations of
individual luminous infrared galaxies, and in blind surveys using the technique
of line intensity mapping. The spectrometer will require large format
(1800 detectors) arrays of dual-polarization sensitive detectors with
NEPs of W Hz. The low-volume LEKIDs are fabricated
with a single layer of aluminum (20 nm thick) deposited on a crystalline
silicon wafer, with resonance frequencies of MHz. The inductor is a
single meander with a linewidth of 0.4 m, patterned in a grid to absorb
optical power in both polarizations. The meander is coupled to a circular
waveguide, fed by a conical feedhorn. Initial testing of a small array
prototype has demonstrated good yield, and a median NEP of
W Hz.Comment: accepted for publication in Journal of Low Temperature Physic
Spatial patterns in optical parametric oscillators with spherical mirrors: classical and quantum effects: errata
We investigate the formation of transverse patterns in a doubly resonant degenerate optical parametric oscillator. Extending previous work, we treat the more realistic case of a spherical mirror cavity with a finite-sized input pump field. Using numerical simulations in real space, we determine the conditions on the cavity geometry, pump size and detunings for which pattern formation occurs; we find multistability of different types of optical patterns. Below threshold, we analyze the dependence of the quantum image on the width of the input field, in the near and in the far field
Microwave Kinetic Inductance Detector (MKID) Camera Testing for Submillimeter Astronomy
Developing kilopixel focal planes for incoherent submm- and mm-wave detectors remains challenging due to either the large hardware overhead or the complexity of multiplexing standard detectors. Microwave kinetic inductance detectors (MKIDs) provide a efficient means to produce fully lithographic background-limited kilopixel focal planes. We are constructing an MKID-based camera for the Caltech Submillimeter Observatory with 576 spatial pixels each simultaneously sensitive in 4 bands at 230, 300, 350, and 400 GHz. The novelty of MKIDs has required us to develop new techniques for detector characterization. We have measured quasiparticle lifetimes and resonator Qs for detector bath temperatures between 200 mK and 400 mK. Equivalent lifetime measurements were made by coupling energy into the resonators either optically or by driving the third harmonic of the resonator. To determine optical loading, we use both lifetime and internal Q measurements, which range between 15,000 and 30,000 for our resonators. Spectral bandpass measurements confirm the placement of the 230 and 350 GHz bands. Additionally, beam maps measurements conform to expectations. The same device design has been characterized on both sapphire and silicon substrates, and for different detector geometries. We also report on the incorporation of new shielding to reduce detector sensitivity to local magnetic fields
MKID development for SuperSpec: an on-chip, mm-wave, filter-bank spectrometer
SuperSpec is an ultra-compact spectrometer-on-a-chip for millimeter and
submillimeter wavelength astronomy. Its very small size, wide spectral
bandwidth, and highly multiplexed readout will enable construction of powerful
multibeam spectrometers for high-redshift observations. The spectrometer
consists of a horn-coupled microstrip feedline, a bank of narrow-band
superconducting resonator filters that provide spectral selectivity, and
Kinetic Inductance Detectors (KIDs) that detect the power admitted by each
filter resonator. The design is realized using thin-film lithographic
structures on a silicon wafer. The mm-wave microstrip feedline and spectral
filters of the first prototype are designed to operate in the band from 195-310
GHz and are fabricated from niobium with at Tc of 9.2K. The KIDs are designed
to operate at hundreds of MHz and are fabricated from titanium nitride with a
Tc of 2K. Radiation incident on the horn travels along the mm-wave microstrip,
passes through the frequency-selective filter, and is finally absorbed by the
corresponding KID where it causes a measurable shift in the resonant frequency.
In this proceedings, we present the design of the KIDs employed in SuperSpec
and the results of initial laboratory testing of a prototype device. We will
also briefly describe the ongoing development of a demonstration instrument
that will consist of two 500-channel, R=700 spectrometers, one operating in the
1-mm atmospheric window and the other covering the 650 and 850 micron bands.Comment: As submitted, except that "in prep" references have been update
- …