9 research outputs found

    Circulating Tumor DNA from Ascites as an alternative to tumor sampling for genomic profiling in ovarian cancer patients

    No full text
    Abstract Genomic testing is crucial for the management of ovarian cancer. DNA from biopsies at diagnostic laparoscopies or interval debulking surgery after neoadjuvant chemotherapy, has a high failure rate. At relapse, biopsies may not be feasible. The aim of our study was to evaluate the feasibility and usefulness of measuring genomic instability score (GIS) on cell-free DNA (cfDNA) from ascites. Patients enrolled in a prospective study (NCT03010124) consented to analysis of biological samples. CfDNA was extracted from 1 to 4 ml of double-centrifuged fresh ascites. Targeted Next-generation sequencing (NGS) including TP53 mutation (TP53m) was performed on cfDNA to confirm the presence of tumor cfDNA. Single Nucleotide Polymorphism Array estimating somatic copy number alterations (SCNA) was performed to calculate GIS for Homologous-Recombination deficiency (HRD). Twenty nine ascites were collected from 20 patients with suspected or confirmed OC. 93% (27/29) samples had detectable cfDNA (median 1120 ng [24-5732]) even when obtained during chemotherapy. A deleterious mutation was identified in 100%, with high allelic frequencies (median 60% [3.3–87%]), confirming that cfDNA was tumoral. SCNA analyses on 17 patients showed 11 high GIS, and 6 low GIS. 4 patients with confirmed BRCA mutation had a high GIS on ascites. When available from the same patient, SCNA profiles on ascites and tumor were superimposable. Ascites is frequent at diagnosis and relapse and yields large amounts of tumoral cfDNA. SCNA analysis on ascitic cfDNA is feasible and can detect the same HRD scar as tumor testing. Ascites could provide an alternative to tumor sampling for HRD and BRCA testing

    Human papilloma virus (HPV) integration signature in Cervical Cancer: identification of MACROD2 gene as HPV hot spot integration site

    No full text
    International audienceBACKGROUND: Cervical cancer (CC) remains a leading cause of gynaecological cancer-related mortality with infection by human papilloma virus (HPV) being the most important risk factor. We analysed the association between different viral integration signatures, clinical parameters and outcome in pre-treated CCs. METHODS: Different integration signatures were identified using HPV double capture followed by next-generation sequencing (NGS) in 272 CC patients from the BioRAIDs study [NCT02428842]. Correlations between HPV integration signatures and clinical, biological and molecular features were assessed. RESULTS: Episomal HPV was much less frequent in CC as compared to anal carcinoma (p 300 different HPV-chromosomal junctions (inter-or intra-genic). The most frequent integration site in CC was in MACROD2 gene followed by MIPOL1/TTC6 and TP63. HPV integration signatures were not associated with histological subtype, FIGO staging, treatment or PFS. HPVs were more frequently episomal in PIK3CA mutated tumours (p = 0.023). Viral integration type was dependent on HPV genotype (p < 0.0001); HPV18 and HPV45 being always integrated. High HPV copy number was associated with longer PFS (p = 0.011). CONCLUSIONS: This is to our knowledge the first study assessing the prognostic value of HPV integration in a prospectively annotated CC cohort, which detects a hotspot of HPV integration at MACROD2; involved in impaired PARP1 activity and chromosome instability

    ESTIMation of the ABiLity of prophylactic central compartment neck dissection to modify outcomes in low-risk differentiated thyroid cancer: a prospective randomized trial

    No full text
    Abstract Background Prophylactic central neck dissection in clinically low-risk cT1bT2N0 papillary thyroid carcinoma is controversial, due to a large number of conflicting retrospective studies, some showing an advantage in terms of locoregional recurrence, others showing no advantage. These previous studies all show high rates of excellent response. We aim to demonstrate the non-inferiority of thyroidectomy alone as compared to total thyroidectomy with prophylactic central neck dissection in conjunction with adjuvant RAI 30 mCi with rTSH stimulation in terms of excellent response at 1 year. Trial design and methods Prospective randomized open multicenter phase III trial including patients with 11–40-mm papillary thyroid carcinoma (Bethesda VI) or suspicious cytology (Bethesda V) confirmed malignant on intra-operative frozen section analysis, with no suspicious lymph nodes on a specialized preoperative ultrasound examination. Patients will be randomized 1:1 into two groups: the reference group total thyroidectomy with bilateral prophylactic central neck dissection, and the comparator group total thyroidectomy alone. All patients will receive an ablative dose of 30mCi of radioactive iodine (RAI) within 4 months of surgery. The primary outcome is to compare the rate of excellent response at 1 year after surgery between the groups, as defined by an unstimulated serum thyroglobulin (Tg) level ≀ 0.2 ng/mL with no anti-Tg antibodies, an normal neck ultrasound and no ectopic uptake on the post-RAI scintiscan. Non-inferiority will be demonstrated if the rate of patients with excellent response at 1 year after randomization does not differ by more than 5%. Setting the significance level at 0.025 (one-sided) and a power of 80% requires a sample size of 598 patients (299 per group). Secondary outcomes are to compare Tg levels at 8 +/− 2 postoperative weeks, before RAI ablation, the rate of excellent response at 3 and 5 years, the rate of other responses at 1, 3, and 5 years (biochemical incomplete, indeterminate, and structurally incomplete responses), complications, quality of life, and cost-utility. Discussion (potential implications) If non-inferiority is demonstrated with this high-level evidence, prophylactic neck dissection will have been shown to not be necessary in clinically low-risk papillary thyroid carcinoma. Trial registration NCT 03570021. June 26,201

    Fine‐needle aspiration as an alternative to core needle biopsy for tumour molecular profiling in precision oncology: prospective comparative study of next‐generation sequencing in cancer patients included in the SHIVA02 trial

    No full text
    High‐throughput molecular profiling of solid tumours using core needle biopsies (CNB) allows the identification of actionable molecular alterations, with around 70% success rate. Although several studies have demonstrated the utility of small biopsy specimens for molecular testing, there remains debate as to the sensitivity of the less invasive fine‐needle aspiration (FNA) compared to CNB to detect molecular alterations. We aimed to prospectively evaluate the potential of FNA to detect such alterations in various tumour types as compared to CNB in cancer patients included in the SHIVA02 trial. An in‐house amplicon‐based targeted sequencing panel (Illumina TSCA 99.3 kb panel covering 87 genes) was used to identify pathogenic variants and gene copy number variations (CNV) in concomitant CNB and FNA samples obtained from 61 patients enrolled in the SHIVA02 trial (NCT03084757). The main tumour types analysed were breast (38%), colon (15%), pancreas (11%), followed by cervix and stomach (7% each). We report 123 molecular alterations (85 variants, 23 amplifications and 15 homozygous deletions) among which 98 (80%) were concordant between CNB and FNA. The remaining discordances were mainly related to deletions status, yet undetected alterations were not exclusively specific to FNA. Comparative analysis of molecular alterations in CNB and FNA showed high concordance in terms of variants as well as CNVs identified. We conclude FNA could therefore be used in routine diagnostics workflow and clinical trials for tumour molecular profiling with the advantages of being minimally invasive and preserve tissue material needed for diagnostic, prognostic or theranostic purposes

    Human papilloma virus integration sites and genomic signatures in head and neck squamous cell carcinoma

    No full text
    International audienceA prevalence of around 26% of human papillomavirus (HPV) in head and neck squamous cell carcinoma (HNSCC) has been previously reported. HPV induced oncogenesis mainly involving E6 and E7 viral oncoproteins. In some cases, HPV viral DNA has been detected to integrate with the host genome and possibly contributes to carcinogenesis by affecting the gene expression. We retrospectively assessed HPV integration sites and signatures in 80 HPV positive patients with HNSCC, by using a double capture-HPV method followed by next-generation Sequencing. We detected HPV16 in 90% of the analyzed cohort and confirmed five previously described mechanistic signatures of HPV integration [episomal (EPI), integrated in a truncated form revealing two HPV-chromosomal junctions colinear (2J-COL) or nonlinear (2J-NL), multiple hybrid junctions clustering in a single chromosomal region (MJ-CL) or scattered over different chromosomal regions (MJ-SC) of the human genome]. Our results suggested that HPV remained episomal in 38.8% of the cases or was integrated/mixed in the remaining 61.2% of patients with HNSCC. We showed a lack of association of HPV genomic signatures to tumour and patient characteristics, as well as patient survival. Similar to other HPV associated cancers, low HPV copy number was associated with worse prognosis. We identified 267 HPV-human junctions scattered on most chromosomes. Remarkably, we observed four recurrent integration regions: PDL1/PDL2/PLGRKT (8.2%), MYC/PVT1 (6.1%), MACROD2 (4.1%) and KLF5/KLF12 regions (4.1%). We detected the overexpression of PDL1 and MYC upon integration by gene expression analysis. In conclusion, we identified recurrent targeting of several cancer genes such as PDL1 and MYC upon HPV integration, suggesting a role of altered gene expression by HPV integration during HNSCC carcinogenesis

    Human papilloma virus (HPV) integration signature in Cervical Cancer: identification of MACROD2 gene as HPV hot spot integration site

    No full text
    Background: Cervical cancer (CC) remains a leading cause of gynaecological cancer-related mortality with infection by human papilloma virus (HPV) being the most important risk factor. We analysed the association between different viral integration signatures, clinical parameters and outcome in pre-treated CCs. Methods: Different integration signatures were identified using HPV double capture followed by next-generation sequencing (NGS) in 272 CC patients from the BioRAIDs study [NCT02428842]. Correlations between HPV integration signatures and clinical, biological and molecular features were assessed. Results: Episomal HPV was much less frequent in CC as compared to anal carcinoma (p 300 different HPV-chromosomal junctions (inter- or intra-genic). The most frequent integration site in CC was in MACROD2 gene followed by MIPOL1/TTC6 and TP63. HPV integration signatures were not associated with histological subtype, FIGO staging, treatment or PFS. HPVs were more frequently episomal in PIK3CA mutated tumours (p = 0.023). Viral integration type was dependent on HPV genotype (p < 0.0001); HPV18 and HPV45 being always integrated. High HPV copy number was associated with longer PFS (p = 0.011). Conclusions: This is to our knowledge the first study assessing the prognostic value of HPV integration in a prospectively annotated CC cohort, which detects a hotspot of HPV integration at MACROD2; involved in impaired PARP1 activity and chromosome instability
    corecore