19 research outputs found
Hawking Spectrum and High Frequency Dispersion
We study the spectrum of created particles in two-dimensional black hole
geometries for a linear, hermitian scalar field satisfying a Lorentz
non-invariant field equation with higher spatial derivative terms that are
suppressed by powers of a fundamental momentum scale . The preferred frame
is the ``free-fall frame" of the black hole. This model is a variation of
Unruh's sonic black hole analogy. We find that there are two qualitatively
different types of particle production in this model: a thermal Hawking flux
generated by ``mode conversion" at the black hole horizon, and a non-thermal
spectrum generated via scattering off the background into negative free-fall
frequency modes. This second process has nothing to do with black holes and
does not occur for the ordinary wave equation because such modes do not
propagate outside the horizon with positive Killing frequency. The horizon
component of the radiation is astonishingly close to a perfect thermal
spectrum: for the smoothest metric studied, with Hawking temperature
, agreement is of order at frequency
, and agreement to order persists out to
where the thermal number flux is ). The flux
from scattering dominates at large and becomes many orders of
magnitude larger than the horizon component for metrics with a ``kink", i.e. a
region of high curvature localized on a static worldline outside the horizon.
This non-thermal flux amounts to roughly 10\% of the total luminosity for the
kinkier metrics considered. The flux exhibits oscillations as a function of
frequency which can be explained by interference between the various
contributions to the flux.Comment: 32 pages, plain latex, 16 figures included using psfi
Multimessenger astronomy with the Einstein Telescope
Gravitational waves (GWs) are expected to play a crucial role in the
development of multimessenger astrophysics. The combination of GW observations
with other astrophysical triggers, such as from gamma-ray and X-ray satellites,
optical/radio telescopes, and neutrino detectors allows us to decipher science
that would otherwise be inaccessible. In this paper, we provide a broad review
from the multimessenger perspective of the science reach offered by the third
generation interferometric GW detectors and by the Einstein Telescope (ET) in
particular. We focus on cosmic transients, and base our estimates on the
results obtained by ET's predecessors GEO, LIGO, and Virgo.Comment: 26 pages. 3 figures. Special issue of GRG on the Einstein Telescope.
Minor corrections include
The Growth Factor Environment Defines Distinct Pluripotent Ground States in Novel Blastocyst-Derived Stem Cells
Pluripotent stem cell lines can be derived from blastocyst embryos, which yield embryonic stem cell lines (ES cells), as well as the postimplantation epiblast, which gives rise to epiblast stem cell lines (EpiSCs). Remarkably, ES cells and EpiSCs display profound differences in the combination of growth factors that maintain their pluripotent state. Molecular and functional differences between these two stem cell types demonstrate that the tissue of origin and/or the growth factor milieu may be important determinants of the stem cell identity. We explored how developmental stage of the tissue of origin and culture growth factor conditions affect the stem cell pluripotent state. Our findings indicate that novel stem cell lines, with unique functional and molecular properties, can be generated from murine blastocyst embryos. We demonstrate that the culture growth factor environment and cell-cell interaction play a critical role in defining several unique and stable stem cell ground states